Cambridge International **AS & A Level** Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS

9702/23 May/June 2016

Paper 2 AS Level Structured Questions MARK SCHEME Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 5 printed pages.

® IGCSE is the registered trademark of Cambridge International Examinations.

群尧咨询

Page 2		2	Mark Scheme Syllabu						Syllabus	Paper	
				Carr	bridge Inter	national	AS/A	Level – May/June 2016	9702	23	
1	(a)	sca	scalars: energy, power and time					A1			
		veo	vectors: momentum and weight					A1	[2]		
	(b)	(i)	 (i) triangle with right angles between 120 m and 80 m, <u>arrows</u> in correct direction and result displacement from start to finish <u>arrow</u> in correct direction and labelled R 				ct direction n and	B1	[1]		
		(ii)	1.	ave	rage speed	(= 200/27	7) = 7.	4 m s ⁻¹		A1	[1]
			2.	res	ultant displac	ement (=	= [120 ²	² + 80 ²] ^{1/2}) = 144 (m)		C1	
				ave	rage velocity	v (= 144/2	27) = {	5.3(3)ms ⁻¹		A1	
				dire	ection (= tan ⁻	¹ 80 / 120)) = 34°	° (33.7)		A1	[3]
2	(a)	sys by	sten a co	natic: onstar	the reading is nt amount	s larger o	or smal	ller than (or varying from) the tr	ue reading	B1	
		ran	dor	n: sca	itter in readir	igs about	the tr	ue reading		B1	[2]
	(b)	pre	cisi	ion: th	e size of the	smallest	divisio	on (on the measuring instrumen	t)		
		0.0	1 m	nm for	the microme	ter				B1	
		aco	cura	acy: ho	ow close (dia	meter) va	alue is	to the true (diameter) value		B1	[2]
3	(a)	(gra has	avit s or	ationa is sto	Il potential er red due to its	nergy is) t s position	the en /heigh	ergy/ability to do work of a <u>mas</u> It in a gravitational field	<u>s</u> that it	B1	
		kinetic energy is energy/ability to do work a object/body/mass has due to its speed/velocity/motion/movement					B1	[2]			
	(b)	(i)	s	= [(u	+ v)t]/2	(or	acceleration = 9.8/9.75 (using	gradient)	C1	
				= [(7	.8 + 3.9) × 0.	4]/2	or	$s = 3.9 \times 0.4 + \frac{1}{2} \times 9.75 \times (0.4)$) ²	C1	
			s	= 2.3	6(4) m					A1	[3]
		(ii)	а	= (v-	- <i>u</i>)/ <i>t</i> or grad	lient of lir	ne			C1	
				= (7.	8 – 3.9)/0.4	= 9.8 (9.7	75) m s	s ⁻² (allow $\pm \frac{1}{2}$ small square in re	adings)	A1	[2]

群尧咨询

Page	3	Mark Scheme	Syllabus	Рар	er		
		Cambridge International AS/A Level – May/June 2016	9702	23			
	(iii)	$KE = \frac{1}{2} m v^2$		C1			
		change in kinetic energy = $\frac{1}{2}mv^2 - \frac{1}{2}mu^2$					
		$= \frac{1}{2} \times 1.5 \times (7.8^2 - 3.9^2)$		C1			
		= 34 (34.22) J		A1	[3		
(c)	wo	rk done = force × distance (moved) or <i>Fd</i> or <i>Fx</i> or <i>mgh</i> or <i>mgd</i> or <i>mg.</i>	x	M1			
		= $1.5 \times 9.8 \times 2.3$ = 34 (33.8) J (equals the change in KE)		A1	[2		
(a)	(resultant force = 0) (equilibrium)						
	the	refore: weight – upthrust = force from thin wire (allow tension in wire))				
	5.3	N(N) - upthrust = 4.8 (N)		B1	[1		
(b)	diff	erence in weight = upthrust or upthrust = 0.5 (N)					
		0.5 = $ ho ghA$ or m = 0.5/9.81 and V = 5.0 $ imes$ 13 $ imes$ 10 ⁻⁶ (m ³	³)	C1			
		ho = 0.5/(9.81 × 5.0 × 13 × 10 ⁻⁶)		C1			
		$= 780 (784) \text{ kg m}^{-3}$		A1	[3		
(a)	the	total momentum of a system (of colliding particles) remains constant	t	M1			
	pro clo	ovided there is no resultant external force acting on the system/isolate sed system	ed or	A1	[2		
(b)	(i)	the <u>total</u> kinetic energy before (the collision) is equal to the total kine energy after (the collision)	etic	B1	[1		
	(ii)	$p (= mv = 1.67 \times 10^{-27} \times 500) = 8.4 (8.35) \times 10^{-25} \mathrm{Ns}$		A1	[1		
	(iii)	1. $mv_{\rm A}\cos 60^\circ + mv_{\rm B}\cos 30^\circ$ or $m(v_{\rm A}^2 + v_{\rm B}^2)^{1/2}$		B1			
		2. $mv_{\rm A}\sin 60^{\circ} + mv_{\rm B}\sin 30^{\circ}$		B1	[2		
	(iv)	8.35×10^{-25} or $500m = mv_A \cos 60^\circ + mv_B \cos 30^\circ$ and					
		0 = <i>mv</i> _A sin60° + <i>mv</i> _B sin30° <i>or</i> using a vector triangle		C1			
		$v_{\rm A} = 250{\rm ms^{-1}}$		A1			
		$v_{\rm B} = 430 \ (433) {\rm m s^{-1}}$		A1	[3		

P	age 4		Mark Scheme Syllabus				
			Cambridge International AS/A Level – May/June 2016 9702				
6 (a)		ohr	n is volt per ampere or volt/ampere	B1	[1]		
	(b)	(i)	$R = \rho l / A$	B1			
			$R_{\rm P} = 4\rho(2l) / \pi d^2$ or $8\rho l / \pi d^2$ or $R_{\rm Q} = \rho l / \pi d^2$				
			ratio idea e.g. length is halved hence R halved and diameter is halved hence R is 1/4	C1			
			$R_{Q} (= 4\rho l/\pi 4d^{2}) = \rho l/\pi d^{2}$ = $R_{P}/8$ (= 12/8) = 1.5 Ω	A1	[3]		
	((ii)	power = $I^2 R$ or V^2 / R or VI	C1			
			= $(1.25)^2 \times 12 + (10)^2 \times 1.5$ or $(15)^2/12 + (15)^2/1.5$ or 15×11.25	C1			
			= (18.75 + 150 =) 170 (168.75) W	A1	[3]		
	(i	iii)	$I_{\rm P}$ = (15/12 =) 1.25 (A) and $I_{\rm Q}$ = (15/1.5 =) 10 (A)	C1			
			$v_{\rm P}/v_{\rm Q} = I_{\rm P} n A_{\rm Q} e / I_{\rm Q} n A_{\rm P} e \text{ or } (1.25 \times \pi d^2) / (10 \times \pi d^2/4)$	C1			
			= 0.5	A1	[3]		
7	(a)	(i)	alter distance from vibrator to pulley alter frequency of generator (change tension in string by) changing value of the masses				
			any two	B2	[2]		
	((ii)	points on string have amplitudes varying from maximum to zero/minimum	B1	[1]		
	(b)	(i)	60° or $\pi/3$ rad	A1	[1]		
	((ii)	ratio = $[3.4/2.2]^2$	C1			
			= 2.4 (2.39)	A1	[2]		

群尧咨询

Page 5		Mark Scheme	Syllabus	Paper	
		Cambridge International AS/A Level – May/June 2016	9702	23	
8	(a)	α-particle is 2 protons and 2 neutrons; β^+ -particle is positive electron/po α-particle has charge +2e; β^+ -particle has + <i>e</i> charge α-particle has mass 4u; β-particle has mass (1/2000)u α-particle made up of hadrons; β^+ -particle a lepton	ositron		
	i	any three		B3	[3]
	(b)	$\mathbf{p} \rightarrow {}^{1}_{0}\mathbf{n} + {}^{0}_{1}\beta + {}^{0}_{0}\nu$			
	i	all terms correct		M1	
	;	all numerical values correct (ignore missing values on $ u$)		A1	[2]
	(c)	(i) 1. proton: up, up, down/uud		B1	
		2. neutron: up, down, down/udd		B1	[2]
	(up quark has charge +2/3 (e) and down quark has charge -1/3 (e total is +1(e) 	e)	B1	[1]