PMT

GCE MARKING SCHEME

CHEMISTRY (NEW) AS/Advanced

JANUARY 2010

PMT

CH1

SECTION A

(Arrow must be directed upwards for mark).

PMT

5.	Sketch a diagram to show the shape of a p-orbital.				
	Dumb	1 mark			
6.	(a)	<i>Dynamic equilibrium</i> is when the rate of the forward rea (and opposite) to the rate of the reverse reaction.	ction is equal 1 mark	[1]	
	(b)	A chemical system is in <i>equilibrium</i> when: there is no change in the amount of each species presen there is no change in the concentrations present / the physical properties are constant.	nt / 1 mark	[1]	

Section A Total [10]

PMT

SECTION B

7.	(a)	(i)	Isotopes are atoms with the same atomic number but different mass number / same number of protons but different numbers of neutrons. 1 mark [1]			
		(ii)	(¹⁹¹ Ir) 77 protons	114 neutrons	77 electrons	1 mark
			(¹⁹³ Ir) 77 protons	116 neutrons	77 electrons	1 mark [2]
		(iii)		units (¹⁹³ lr) mm (¹⁹³ lr) <u>31 x 1(</u> 50		[2] 1 mark 1 mark
	(b)	(i)	Loss of an electron (from th	e nucleus).	1 mark	[1]
		(ii)	Mass number 192	Symbol Pt	1 mark for eac	h [2]
	(c)	(i)	Half-life is the time taken for	r half the amount	t of material to o 1 mark	decay <i>.</i> [1]
		(ii)	Half-life of ¹⁹² Ir = 73 (±	1) days	1 mark	[1]
		(iii)	1.25 g left (10 \rightarrow 5 \rightarrow 2.5 \rightarrow / 3 half lives elapsed	→ 1.25 g)	1 mark	
			3 x 73 days = 219 days (2 marks for correct answer the half life obtained in (c) (i	0	1 mark . Mark consequ	entially on [2]
	(iv) Rate of decay of ¹⁹² Ir (g day ⁻¹) during the first 20 days. Mass decayed in 20 days = $10 - 8.3 = 1.7$ g 1 mark					
				1 mark		
(Since for the first 20 days the line is indistinguishable from I rate = $1.7 / 20 = 0.085$ g day ⁻¹ 1 m (No penalty if units omitted, but do not allow if wrong units gi			1 mark	[2]		

PMT

(d)	(i)		Sodium	Iridium	Chlorine	
		Moles	10.2 / 23 = 0.443	42.6 / 192 = 0.222	47.2 / 35.5 = 1.330	
					1 mark	
		Ratio	0.443 / 0.222	0.222 / 0.222	1.330 / 0.222	
		Hence	Na ₂ IrCl ₆		1 mark	[2]
	(ii)	P is Na ₂ IrCl ₆				
		So for 2	NaCl + $IrCl_x \rightarrow$	Na ₂ IrCl ₆		
		x must be 4 / IrCl ₄ (Mark consequentially if formula of P is incorrect)			1 mark	[1]
						Total [17]

群尧

咨询	PMT

8.	(a)	(i)	Reaction 1 is the most effective.1 markLowest number moles Na_2CO_3 needed per mole CO_2 /Highest number moles CO_2 absorbed per mole Na_2CO_3 /or equivalent statement1 mark[2]
			QWC The information is organised clearly and coherently, using specialist vocabulary where appropriate.1 mark awarded if candidate has clearly explained their reasoning with appropriate use of words such as mole or ratio.[1]
		(ii)	Le Chatelier's Principle: When a system in equilibrium is subjected to a change, the processes which occur are such as to oppose the effect of the change. 1 mark [1] (or equivalent statement)
		(iii)	More efficient at high gas pressure. 1 mark (Whichever reaction is used gases only occur amongst the reactants, so by Le Chatelier's Principle) high pressure will favour the forward reaction because of the reduction in the number of moles of gas. 1 mark [2]
	(b)	(i)	Exothermic.1 markAs the temperature increases, less product (NaHCO3) / morereactants (Na2CO3, CO2 and H2O) are present so reverse reaction isfavoured and forward reaction must be exothermic(or any equivalent statement)1 mark1 mark[2]
		(ii)	I (NaHCO ₃ can be used to regenerate sodium carbonate) by heating (to 90°C) 1 mark [1]
			II <i>Either</i> Energy must be supplied for heating (with cost implications) <i>or</i> CO ₂ (g) would be released into the environment (unless prevention measures taken, negating the point of using sodium carbonate to absorb CO ₂ (g)). 1 mark [1]

(C)	(i)	Relative molecular mass $CO_2 = 44$	1 mark	
		No moles $CO_2 = 275 / 44 = 6.25$	1 mark	[2]
	(ii)	$6.25 \times 24.0 = 150 \mathrm{dm}^3$	1 mark	[1]
	(iii)	150 x 100 / 1000 = 15%	1 mark	[1]
(d)	(i)	An acid is an H^+ / proton donor.	1 mark	[1]
	 (ii) (Although CO₂ does not contain any hydrogen) it reacts with to produce H⁺ ions / to form carbonic acid / 			
		to form H_2CO_3 .	1 mark	[1]
	(iii)	Carbon dioxide from air will produce H^+ ions / matrix acidic and acids have pH less than 7.	ake the water 1 mark	[1]

Total [17]

9.

PMT

(a)	(i)	1 mark for setting up correctly $\Delta H^{\circ} = 243 + 436 - (2 \times 432)$		
		1 mark for calculation $\Delta H^{\circ} = -185 \text{ kJ mol}^{-1}$		[2]
	(ii)	$\Delta H_{\rm f}^{\stackrel{\circ}{}}$ HCl (g) = -185 / 2 = -92.5 kJ mol ⁻¹ (Mark consequentially if $\Delta H^{\stackrel{\circ}{}}$ value incorrect)	1 mark	[1]
	(iii)	2 x 1 mark for: Temperature 25°C / 298 K Pressure 1 atm		[2]
	(iv)	Chlorine – chlorine bond (as it is the weakest).	1 mark	[1]
	(v)	Blue and violet light provide sufficient energy to break the Cl ₂ covalent bond	2 x 1 mark 1 mark.	[3]
	(vi)	No visible light has sufficient energy to break the H-CI bond.	1 mark	[1]

PMT

(b) Energy reactants products Reaction path (Extent of the reaction)

- 6 x 1 mark:
 - Correct drawing of profile (must be exothermic and show reactants / products)
 - Activation Energy is the minimum energy necessary for a reaction to occur
 - Increasing temperature increases the (kinetic) energy of molecules
 - so more molecules have greater than the activation energy (and reaction speeds up)
 - A catalyst lowers the activation energy
 - so speeds up the reaction.
 (the points may be made in conjunction with the profile diagram).
- QWC Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning. 1 mark

Selection of a form and style of writing appropriate to purpose and to complexity of subject matter. In particular, relating text to the profile diagram. 1 mark [2]

Total [18]

(C)

- PMT
- 10. (a)Transfer of H^+ (from HCl to NH_3)1 markHCl acid, NH_3 base1 mark[2]
 - (b) (i) $\Delta H = \frac{- \mathrm{vc} \Delta T}{\mathrm{n}}$

1 mark for total volume = 50 cm^3

1 mark for converting kJ to J (or vice versa)

1 mark for calculating n (mark consequentially if set up wrongly above)

$$-53.4 \times 1000 = \frac{-50 \times 4.2 \times 0.7}{n}$$
n, no moles NH₃ = 2.75 × 10⁻³ [3]
(ii) 2.75 × 10⁻³ mol NH₃ in 25 cm³
so concentration = 2.75 × 10⁻³ × 1000/25 = 0.11 mol dm⁻³
1 mark [1]
(i) Mean titre = 31.23 cm³ 1 mark
Concentration NH₃ = 31.23 × 0.100 / 25 = 0.125 cm³
1 mark [2]

(ii) Titration will give the more precise value for concentration 1 mark

2 marks for two of the following:

Temperature change only read to one significant figure, titre to three significant figures / titration is a more precise technique than thermometry. 1 mark

The titration is repeated three times (to obtain consistent results), but only one measurement of temperature change. 1 mark

Thermometric method susceptible to heat loss (but no corresponding problem in titrations). 1 mark [3]

(d)

群尧咨询

(i) Both already elements in their standard states / no change needed to form them. 1 mark [1] the standard enthalpy change, ΔH , for the combustion of (ii) T ammonia $4NH_3(g) + 3O_2(g) \rightarrow 2N_2(g) + 6H_2O(g)$ 1 mark for setting up $\Delta H^{\bullet} = (2 \times 0) + (6 \times -241.8) - (4 \times -46.1) - (3 \times 0)$ 1 mark for calculation $\Delta H^{i} = -1450.8 + 184.4 = -1266.4 \text{ kJ mol}^{-1}$ [2] the standard enthalpy change, ΔH , for the combustion of П methane $CH_4(g) + O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ 1 mark for setting up ΔH = (1 x - 393.5) + (2 x - 241.8) - (1 x - 74.8) - (1 x 0) 1 mark for calculation ΔH = -393.5 - 483.6 + 74.8 = -802.3 kJ mol [2] (iii) Advantage of using ammonia: No CO_2 / greenhouse gases emitted 1 mark Disadvantage of using ammonia: Much less energy produced per mole on combustion (318.6 v 802.3 kJ mol) /more ammonia needed than methane to

produce the same amount of energy /sharp smell of ammonia/

ammonia more corrosive.

Total [18]

[2]

Section B Total [70]

1 mark