PMT

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

JANUARY 2013

群尧咨询

GCE CHEMISTRY - CH1

JANUARY 2013 MARK SCHEME

SECTION A

Q.3
$$A_r = (12.0 \times 6) + (88.0 \times 7) (1) = \frac{72.0 + 616.0}{100} = 6.88 (1)$$
 [2]

Q.4 (a)
$$\Delta H = \Delta H_2 + \Delta H_3 - \Delta H_1$$
 [1]
(b) $\frac{1}{2}N_2(g) + \frac{1}{2}O_2(g) \rightarrow NO(g)$ state symbols requires [1]

Q.6	Ti <u>60</u> 48	O <u>40</u> 16	(1)	
	= 1.25	= 2.5	∴ 1:2	
	∴ TiO2	(1)		[2]

Section A Total [10]

群尧咨询

SECTION B

Q.7	(a)	(i)	A helium (atom) nucleus / 2 protons and 2 neutrons / ${}^{4}\text{He}^{2+}$	[1]
-----	-----	-----	---	-----

(ii) b......22 (1) X.....Ne (1) [2]

(iii)
$$(4 \times 2.6) = 10.4$$
 [1]

(b) The frequency of the green line at 569 nm is HIGHER. than the frequency of the yellow-orange line at 589 nm. Another line is seen at 424 nm, this is caused by an electronic transition of HIGHER. energy than the line at 569 nm.
[1]

(c) (i) Na₂CO₃ NaHCO₃ 2H₂O

$$\downarrow$$
 \downarrow \downarrow \downarrow \downarrow
106 + 84 + 36 (1) \rightarrow 226 [1]

(or by other appropriate method – note mark is for the working)

(ii) Atom economy =
$$\frac{M_r \text{ required product } \times 100}{\text{Total '}M_r' \text{ of the reactants}}$$
 (1)

$$= \frac{318 \times 100}{452} = 70.4 / 70.35 (\%) (1) [2]$$

- (d) (i) Water is acting as a proton donor (1) and this combines with the carbonate ion $/ CO_3^{2^\circ}$, giving the hydrogencarbonate ion $/ HCO_3^{-}$ (1) [2]
 - (ii) The pH scale runs from 0-14 / measure of acidity / alkalinity (1) pH <7 acid / >7 alkali (1) acid stronger as pH value decreases / alkali stronger as pH value increases / 11.4 is strong alkali (1) [3]

Total [15]

© WJEC CBAC Ltd.

Q.8

(a)

(i)

(ii)

is higher (1)

群尧咨询

He may have lost carbon dioxide through leaks, this would have given a lower volume than expected. (1) He used lower concentration of acid / diluted the acid with water and the rate of carbon dioxide evolution was slower than expected. (1) [2] The concentration of acid is higher in the first half (1) the collision rate [2]

eg k = $\frac{V}{T}$ (1) \therefore k = $\frac{130}{298}$ 0.436 (iii) 1

> \therefore V = 0.436 x 323 = 141 (cm³) (1)

or
$$\frac{V_1}{V_2} = \frac{T_1}{T_2}$$
 (1) $\therefore V_1 = \frac{323 \times 130}{298} = 141 \text{ (cm}^3$) (1) [2]

(b) (i)
$$260 \text{ (cm}^3$$
) [1]

(c) The diagram shows two reasonable distribution curves with T₂ flatter and 'more to the right' than T_1 . (1) Activation energy correctly labelled, or mentioned in the writing (1) Fraction of molecules having the required activation energy is much greater at a higher temperature (thus increasing the frequency of successful collisions) (in words) (1) [3]

The candidate has selected a form and style of writing that is appropriate to purpose and complexity of the subject matter QWC [1]

Place the mixture on a balance and measure the (loss in) mass (1) (d) at appropriate time intervals (1)

OR BY OTHER SUITABLE METHOD

eg. sample at intervals / quench (1) titration (1) [2]

Total [14]

群尧咨询

Q.9

(a) (i) They are both elements in their standard states. [1]
(ii)
$$\Delta H = \sum \Delta H_1$$
 products $-\sum \Delta H_1$ reactants (1)
 $= (-286 + 0) - (-368 + 0)$
 $= -286 + 368 = (+)82 (kJ mol-1)$ (1) [2]
or by a cycle where correct cycle drawn (1) correct answer (1)
(b) (i)
(b) (i)
 $\mu = \frac{1}{100} \frac{1}{1$

© WJEC CBAC Ltd.

PMT

(iii) Look for at least four relevant positive points

[4]

- e.g. the process uses a (heterogeneous) catalyst, which can easily be separated from the gaseous products (thus saving energy)
 - the only other product of the reaction is gaseous nitrogen, which is non-toxic / safe / not a harmful product
 - the process uses nitrogen(I) oxide which is used up, rather than being released into the atmosphere from the other process (and causing global warming)
 - the process is exothermic and the heat produced can be used elsewhere
 - a relatively moderate operating temperature reduces overall costs
 - high atom economy

Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning QWC

Total [14]

[1]

(ii)
$$(0.050 \times 24.0) = 1.20 \,(\text{dm}^3)$$
 [1]

(iii) % v/v =
$$\frac{1.20 \times 0.001 \times 100}{2}$$
 (1) = 0.06 (1) [2]

Organisation of information clearly and coherently; using specialist vocabulary where appropriate QWC [1]

Total [15]

PMT

Q.11	(a)	(i)	I burette / (graduated) pipette [1]		
			II volumetric / graduated / standard flask [1]		
		(ii)	0.0064 [1]		
		(iii)	1.20 g / 100 cm ³ solution [1]		
		(iv)	12.0 g / 100 cm ³ solution			
	(b)	(i)	The catalyst is in a different physical state to the reactants.	1]		
		(ii)	Bonds broken 2 H-H \rightarrow 872 1 C-O \rightarrow 360 1 C-H \rightarrow 412 1 O-H \rightarrow 463 1 C=O \rightarrow 743			
			Total +2850 kJ (1)			
			Bonds made $3 \text{ C-H} \rightarrow 1236$ 1 C-O $\rightarrow 360$ 3 O-H $\rightarrow 1389$			
			Total -2985 kJ (1)			
			$\Delta H = 2850 - 2985 = -135 \text{ kJ mol}^{-1} $ (1)	3]		
	(c)	Relative molecular mass is a relative quantity (based on $^{1}/_{12}$ th of the 12 C ato as one unit).				
	(d)	(i)	The rate of the forward reaction is equal to the rate of the backward reaction.	1]		
		(ii)	C ₂ H ₄ O [1]		
			Total [1	2]		
			Total Section B [7	0]		