## Solutions

1. To maximise, subtract all entries from $n \geq 278$
e.g.

$$
\left[\begin{array}{llll}
11 & 6 & 2 & 17 \\
14 & 7 & 0 & 15 \\
11 & 5 & 3 & 15 \\
17 & 9 & 4 & 21
\end{array}\right]
$$

## Reduce rows

$$
\left[\begin{array}{cccc}
9 & 4 & 0 & 15 \\
14 & 7 & 0 & 15 \\
8 & 2 & 0 & 12 \\
13 & 5 & 0 & 17
\end{array}\right]
$$



Min element $=1$

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 2 \\
5 & 4 & 0 & 2 \\
0 & 0 & 1 & 0 \\
4 & 2 & 0 & 4
\end{array}\right]
$$

## then columns

$$
\left[\begin{array}{llll}
1 & 2 & 0 & 3 \\
6 & 5 & 0 & 3 \\
0 & 0 & 0 & 0 \\
5 & 3 & 0 & 5
\end{array}\right]
$$

M1 A1ft A1ft 3

M1 A1ft A1 3

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
5 & 3 & 0 & 1 \\
1 & 0 & 2 & 0 \\
4 & 1 & 0 & 3
\end{array}\right]
$$

Min element $=1$


Min element $=2$

$$
\left[\begin{array}{llll}
0 & 1 & 2 & 2 \\
3 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
2 & 0 & 0 & 2
\end{array}\right] \quad \text { M1 A1ft A1ft }
$$

| $\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right]$ | So | A - H |  | M1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $4 \begin{array}{llll}4 & 2 & 0 & 0\end{array}$ |  | H |  | A1 | 2 |
| $\begin{array}{lllll}4 & 2 & 0 & 0\end{array}$ |  | B - P | or |  |  |
| $\begin{array}{llll}1 & 0 & 3 & 0\end{array}$ |  | S |  |  |  |
| $\left[\begin{array}{llll}3 & 0 & 0 & 2\end{array}\right]$ |  | C-S |  |  |  |
| optimal |  | I |  |  |  |
| optina |  | D - I |  |  |  |
|  |  | P |  |  |  |
|  |  | (both | 1077) |  |  |

2. e.g.

| Stage | State | Action | Dest | Value |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 1 \\ \text { (Sept) } \end{gathered}$ | $\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right.$ | 2 3 4 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} 200+200 & =400 * \\ 200+100 & =300 * \\ 200 \quad & =200 * \end{aligned}$ |
| $\begin{gathered} 2 \\ (\text { Aug }) \end{gathered}$ | 12 | 5 4 3 | 2 1 0 | $\begin{aligned} & 200+200+500+400=1300 \\ & 200+200+300=700 \\ & 200+200+200=600 * \end{aligned}$ |
|  | 1 | 5 | 1 | $\begin{aligned} & 200+100+500+300=1100 \\ & 200+100+200=500 * \end{aligned}$ |
|  | 0 | 5 | 0 | $200+500+200=900$ * |
| $\begin{gathered} 3 \\ (\mathrm{Jul}) \end{gathered}$ | 2 | 5 | 0 | $200+200+500+900=1800$ * |
| $\begin{gathered} 4 \\ \text { (Jun) } \end{gathered}$ | 2 | 3 | 2 | $200+200+1800=2200 *$ |
|  | 1 | 4 | 2 | $200+100+1800=2100 *$ |
|  | 0 | 5 | 2 | $200+500+1800=2500$ * |
| $\begin{gathered} 5 \\ \text { (May) } \end{gathered}$ | 0 | 5 | 2 | $200+500+2200=2900$ |
|  | 1 | 4 | 2 | $200+2100=2300$ * |
|  | 0 | 5 | 2 | $200+2500=2700$ * |


| Month | May | June | July | August | September | M1 A1ft |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| production schedule | 4 | 4 | 5 | 5 | 4 |  |

Cost $£ 2300$
A1ft 3
3. Let $x_{i j}$ be the number of units transported from $i$ to $j$, in 1000 litres
where $\mathrm{i} \in\{\mathrm{F}, \mathrm{G}, \mathrm{H}\}$ and $j \in\{\mathrm{~S}, \mathrm{~T}, \mathrm{U}\}$
B2, 1, $0 \quad 2$
Minimise

$$
\mathrm{C}=23 x_{\mathrm{fs}}+31 x_{\mathrm{fft}}+46 x_{\mathrm{fu}}+
$$

$$
35 x_{\mathrm{gs}}+38 x_{\mathrm{gt}}+51 x_{\mathrm{gu}}+
$$

B1 2

$$
41 x_{\mathrm{hs}}+50 x_{\mathrm{ht}}+63 x_{\mathrm{hu}}
$$

Unbalanced

Subject to

$$
\begin{array}{ll}
x_{\mathrm{fs}}+x_{\mathrm{ft}}+x_{\mathrm{fu}} \leq 540 \\
x_{\mathrm{gs}}+x_{\mathrm{gt}}+x_{\mathrm{gu}} \leq 789 & \\
x_{\mathrm{hs}}+x_{\mathrm{ht}}+x_{\mathrm{hu}} \leq 673 & \\
x_{\mathrm{fs}}+x_{\mathrm{gs}}+x_{\mathrm{hs}} \leq 257 & \} \\
x_{\mathrm{ft}}+x_{\mathrm{gt}}+x_{\mathrm{ht}} \leq 348 & \} \\
x_{\mathrm{fu}}+x_{\mathrm{gu}}+x_{\mathrm{hu}} \leq 412 & \}
\end{array} \quad \text { accept }=\text { here }
$$

B1 1
Accepted introduction of a dummy demand methods.
4. (a) Adds zero for costs in third column
(b) The total supply is greater than the total demand
(c) The solution would otherwise be degenerate
(d)

|  |  | 10 | 15 | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :--- |
|  |  | J | K | L |  |
| 0 | A |  | 8 | 1 |  |
| 0 | B |  |  | 13 |  |
| -6 | C | 9 | 3 |  | $\mathrm{I}_{\mathrm{AJ}}=12-0-10=2$ |
|  |  |  | $\mathrm{I}_{\mathrm{BJ}}=8-0-10=-2$ |  |  |
|  |  |  |  | $\mathrm{I}_{\mathrm{BK}}=17-0-15=2$ |  |
|  |  | $\mathrm{I}_{\mathrm{CL}}=0+6-0=6$ |  |  |  |


|  | J | K | L |
| :---: | :---: | :---: | :---: |
| A |  | $8-\theta$ | $1+\theta$ |
| B | $\theta$ |  | $13-\theta$ |
| C | $9-\theta$ | $3+\theta$ |  |

$$
\begin{gathered}
\theta=8 \\
\text { Entering square BJ }
\end{gathered}
$$

|  |  | 8 | 13 | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  |  | J | K | L |
| 0 | A |  |  | 9 |
| 0 | B | 8 |  | 5 |
| -4 | C | 1 | 11 |  |

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{AJ}}=12-0-8=4 \\
& \mathrm{I}_{\mathrm{AK}}=15-0-13=2 \\
& \mathrm{I}_{\mathrm{BK}}=17-0-13=4 \\
& \mathrm{I}_{\mathrm{CL}}=0+4-0=4
\end{aligned}
$$

No negatives, so optimal
5. (a) Row minimums $\{-2,-1,-4,-2\}$ row maximum $=-1$

Column maximums $\{1,3,3,3\}$ column minimum $=1$
M1 A1

A1 3
(b) Row 2 dominates Row 3

Column 1 dominates column 4
B1
B1 2
(c) Let A play row $R$, with probability $P_{1}, R_{2}$ with probability $P_{2}$
and " $\mathrm{R}_{3}$ " with probability $\mathrm{P}_{3}$.
$\left(\begin{array}{ccc}-2 & 1 & 3 \\ -1 & 3 & 2 \\ 1 & -2 & -1\end{array}\right) \begin{aligned} & \text { eg } \\ & \rightarrow 3\end{aligned}\left(\begin{array}{lll}1 & 4 & 6 \\ 2 & 6 & 5 \\ 4 & 1 & 2\end{array}\right)$
e.g. maximise $\mathrm{P}=\mathrm{V}$

M1 2
B1

M1 A1
A4ft, 3ft, 2ft, 1ft, $0 \quad 6$

$$
\begin{aligned}
& \text { subject to } V-p_{1}-2 p_{2}-4 p_{3} \leq 0 \\
& \qquad V-4 p_{1}-6 p_{2}-p_{3} \leq 0 \\
& V-6 p_{1}-5 p_{2}-2 p_{3} \leq 0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{p}_{1}+\mathrm{p}_{2}-\mathrm{p}_{3} \leq 1 \\
& \mathrm{~V}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3} \geq 0
\end{aligned}
$$

OR
e.g. Let $\quad x_{i}=\frac{p_{i}}{v} \quad \therefore \quad \frac{1}{v}=x_{1}+x_{2}+x_{3}$
minimise $\mathrm{P}=x_{1}+x_{2}+x_{3}$
subject to $\quad x_{1}+2 x_{2}+4 x_{3} \geq 1$
$4 x_{1}+6 x_{2}+x_{3} \geq 1$
$6 x_{1}+5 x_{1}+2 x_{3} \geq 1$
$x_{1}+x_{2}+x_{3} \geq 0$

+ other equivalent methods.

6. (a)


## R.M.S.T

e.g. $\mathrm{AH}, \mathrm{AB}, \mathrm{BD}, \mathrm{DE}$

HG, EF using prim
A1
length of R M S T $=459$
$\therefore$ lower bound $=459+53+83=595 \mathrm{~km}$ (deleting c )
$\therefore$ Best lower bound is 595 km , by deleting c
(b) Adds 167 to AF and FA

137 to CH and HC
B1, 3, 2, 1, $0 \quad 4$
136 to DF and FD
145 to DG and GD
(c) $\begin{array}{lllllllll}\mathrm{C} & \mathrm{D} & \mathrm{E} & \mathrm{F} & \mathrm{H} & \mathrm{A} & \mathrm{B} & \mathrm{G} & \mathrm{C}\end{array}$ M1 A1
$\therefore$ Best upper bound is 707 starting at $F$
B1ft 4
7. (a) (i) A cut is a division of the vertices of a flow network into 2 sets, one containing the source(s) and the other containing the $\operatorname{sink}(\mathrm{s})$. B1
(ii) A cut whose capacity is least

B1 2
(b) $C_{1}=1038, C_{2}=673$

B1, B2, $0 \quad 3$
(c) e.g.


M1A1A1 3
$\mathrm{O}=$ saturated

- = compulsory
(d) $\mathrm{AC}, \mathrm{CD}, \mathrm{GF}, \mathrm{FT}$

B1 1
(e) DE would not allow any further flow into EF B1, 1, $0 \quad 2$

DG would cross both minimum cuts - D can take extra flow, G can accept it. Flow increased by 8.6 to $\mathbf{7 5 9}$ (accept either number)

