Surname	Centre Number	Candidate Number
Other Names		2

GCE A level

1094/01

CHEMISTRY CH4

A.M. WEDNESDAY, 13 June 2012 $1\frac{3}{4}$ hours

FOR EXAMINER'S USE ONLY						
Section	Question	Mark				
А	1					
	2					
	3					
D	4					
В	5					
TOTAI						

ADDITIONAL MATERIAL

In addition to this examination paper, you will need:

- a calculator;
- an 8 page answer book;
- a Data Sheet which contains a Periodic Table supplied by WJEC.

Refer to it for any relative atomic masses you require.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer all questions in the spaces provided.

Section B Answer both questions in Section B in a separate answer book which should then be placed inside this question-and-answer book.

Candidates are advised to allocate their time appropriately between Section A (40 marks) and Section B (40 marks).

INFORMATION FOR CANDIDATES

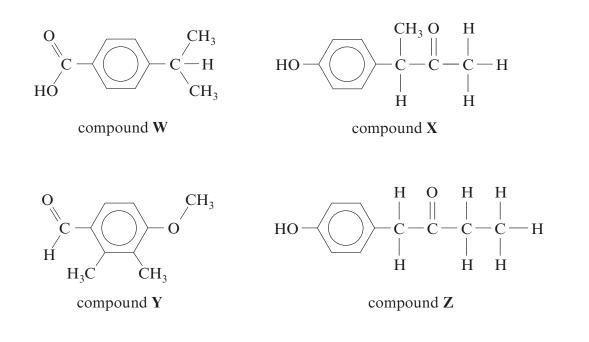
The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

You are reminded that marking will take into account the Quality of Written Communication in all written answers.

094


Examiner only

2

SECTION A

Answer all questions in the spaces provided.

1. This question focuses on the chemistry of some of the many compounds which share the molecular formula $C_{10}H_{12}O_2$. Four compounds with this formula are shown below.

(a) Draw an **ester** which is an isomer of the compounds above.

[1]

(b) Only one of the compounds shown can exhibit optical isomerism.
(i) Identify which compound can exhibit optical isomerism.
(ii) Indicate the chiral centre in this molecule by labelling it with an asterisk (*).
(iii) State how the two enantiomers of this compound can be distinguished.

(c) The four compounds W, X, Y and Z were tested using a series of reagents. For each of the tests listed below, describe what would be expected to be observed in a positive test. Indicate which compounds would be expected to give a positive result.

All the tests listed will give positive results with at least one compound.

Reagent(s)	Observation if the test is positive	Compounds that would give a positive result
I ₂ /NaOH(aq)		
Na ₂ CO ₃ (aq)		
FeCl ₃ (aq)		

(d) Compound W can be oxidised to produce benzene-1,4-dioic acid (terephthalic acid). This reaction can be undertaken in the same way as the oxidation of methylbenzene to form benzenecarboxylic acid.

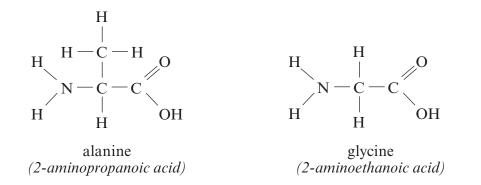
(HO	$C \longrightarrow C \xrightarrow{CH_3} \longrightarrow O \xrightarrow{CH_3} C \xrightarrow{O} O O O O \xrightarrow{O} O O O O \xrightarrow{O} O O O O O O O O O O O O O O O O O O $
	compound W benzene-1,4-dioic acid (terephthalic acid)
(i)	Give the reagent(s) and condition(s) required for this oxidation reaction. [2]
(ii)	Almost all the benzene-1,4-dioic acid produced worldwide is used in the production of condensation polymers.
	I. Give two differences between condensation polymerisation and addition polymerisation. [2]

4 Examiner only Draw the repeat unit for the polymer formed between benzene-1,4-dioic II. acid and ethane-1,2-diol. [1] 0 ſ $HO - CH_2 - CH_2 - OH$ HO OН benzene-1,4-dioic acid ethane-1,2-diol (terephthalic acid) Compound Z may be converted into a secondary alcohol as shown below. (e) Η Ο Η Η Η OH H Η HO -H C-- H C C HO C С (Η Η Η Η Η Η Η compound Z compound V (i) Give a suitable reagent for this process and classify the reaction that occurs. [2] Reagent Classification of reaction

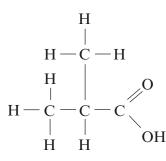
(ii) Compound V will react with ethanoyl chloride.Give the structure of a carbon-containing product of this reaction.

[1]

Examiner only


(iii) Compound V is insoluble in cold water, but reacts with sodium hydroxide solution and then dissolves.
 Give the structure of the carbon-containing species present in the resulting solution.

 $1094 \\ 010005$


Total [19]

Examiner only

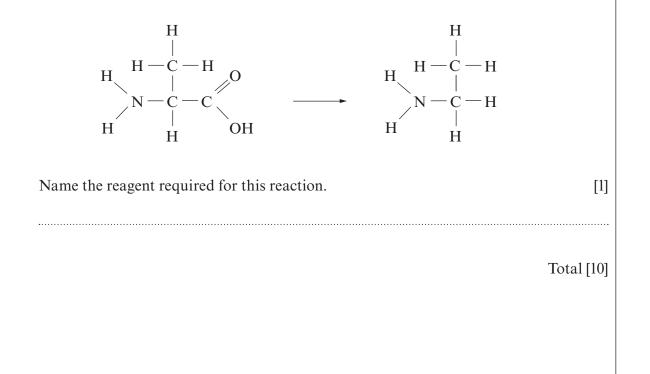
- 2. Proteins and polypeptides are natural polyamides built up from α -amino acids.
 - (a) Two naturally-occurring α -amino acids are alanine and glycine.

(i) Alanine (2-aminopropanoic acid) has a melting temperature of 258 °C whereas the similar compound 2-methylpropanoic acid melts at -46 °C.

2-methylpropanoic acid

Explain why the value for alanine is so much higher than that of 2-methylpropanoic acid. [2]

-
- (ii) Draw the **two** possible dipeptides that can form when one molecule of glycine combines with one molecule of alanine. [2]


(iii) Circle the peptide linkage in one of your dipeptides.

[1]

(

	7	Examir only
(b)	Give one use of proteins or polypeptides in biological systems. [1]	
(c)	One laboratory synthesis of amino acids involves the reaction between an aldehyde and hydrogen cyanide, HCN, as the first step before the amino group is introduced into the molecule.	2
	For a general aldehyde, R-CHO, draw the mechanism of the reaction that occurs between this molecule and HCN. [3]	

Amino acids can be converted to amines in a one-step process, as shown below. (d)

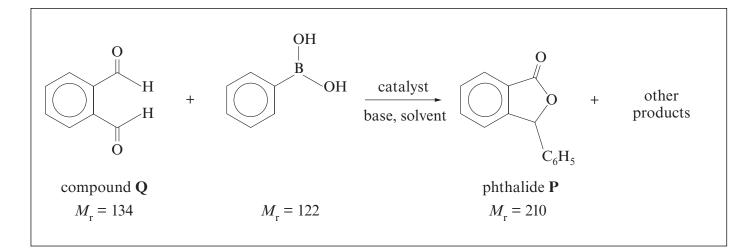
8

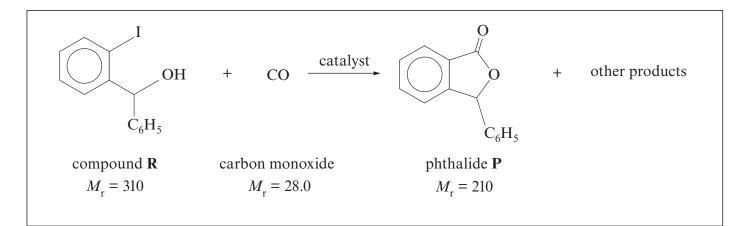
3. *Read the passage below and then answer the questions in the spaces provided.*

Phthalides

Phthalides are a family of compounds which are present in many plants, fungi and moulds. They are all based around the basic phthalide structure which has a benzene ring with a five-membered cyclic ester attached to it.

5 Many phthalide-containing plants have been used worldwide as herbal remedies in traditional and folk medicines, and these have been found to affect many biological systems. 3-arylphthalides are also useful intermediates in the synthesis of anthracycline antibiotics.


Some phthalides and their derivatives also act to enhance the flavour of food. In studies of celery, it was found that three particular compounds present in the plant had no flavour of their own, but enhanced the flavours of other foods when cooked together. These three were sedanenolide, sedanolide and 3-butylphthalide.


These molecules, amongst many others, are present in substantial amounts in oil of celery seed. These compounds are usually liquids with different boiling temperatures.

Due to the phthalide structure being a key part of useful molecules, there have been many attempts at synthetic routes to produce this structure. Two successful methods to form 3-phenylphthalide are shown as route 1 and route 2 opposite. Route 1 was developed more recently than route 2, and is considered to be a significant improvement. One reason for considering route 1 to be the better approach is the greater variety of different phthalides that can be produced by this method, whilst route 2 is only useful for a limited number of phthalides.

Route 1

Route 2

- End of passage -

(a)

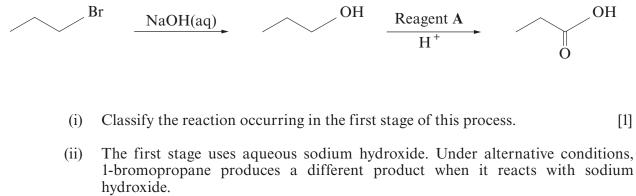
(b)

(c)

only

10 Examiner Phthalides are considered to be cyclic esters (line 3). (i) Indicate the ester group on the diagram of phthalide below by drawing a circle around it. [1] phthalide (ii) Esters can be hydrolysed by heating with dilute sodium hydroxide solution. Draw the structure of the ion formed by hydrolysis of phthalide in this way. [1] Celery seed oil contains many different compounds (lines 13-14). Suggest a method for obtaining pure samples of each different compound. [1] It is possible to convert 3-butylphthalide into sedanenolide in a hydrogenation reaction. \cap \cap C_4H_9 C₄H₉ 3-butylphthalide sedanenolide In this case the enthalpy change is $+20 \, \text{kJ} \, \text{mol}^{-1}$. The enthalpy change during hydrogenation of an alkene to form an alkane is typically -120 kJ mol^{-1} . Explain this significant difference in enthalpy values for these two reactions. [2]

	11	Examiner only		
(d)	The atom economy for route 1 to produce phthalide P is 82.0%. Calculate the atom economy for route 2 to produce P. [1]			
(e)	Route 1 is considered to be the better of the two methods for producing phthalides <i>(line 18)</i> .			
	 (i) Give one reason stated in the passage for considering route 1 to be the better method. [1] 			
	 (ii) Give one reason not stated in the passage for considering route 1 to be the better method. 			
(<i>f</i>)	Give a chemical test that would distinguish between compound \mathbf{Q} and compound \mathbf{R} (page 9). Include any reagent(s) required and state the observations expected for each compound. [3]			
	Reagent(s)			


Total [11]

Total Section A [40]

SECTION B

Answer **both** questions in the separate answer book provided.

4. (a) 1-bromopropane can be used to prepare propanoic acid in a two-stage process shown below.

Give the alternative conditions required, and the product that would be formed from 1-bromopropane under these conditions. [2]

- (iii) For the second stage, state the **full name** of reagent A and classify the reaction occurring. [2]
- (iv) Reagent A can also be used to produce propanal from propan-1-ol. State how you would isolate propanal from this reaction. [1]
- (b) (i) 1-bromopropane can also be used to prepare butanoic acid in a different two-stage process. For each of these two stages, give reagents and conditions required, and draw the displayed formula (showing all bonds) of the intermediate. [3]
 - (ii) Butanoic acid is used to prepare esters used in the flavouring and perfume industries. It may be prepared from 1-bromopropane in a two-stage process as in (b)(i) above or from butan-1-ol or butanal in a one-stage process.

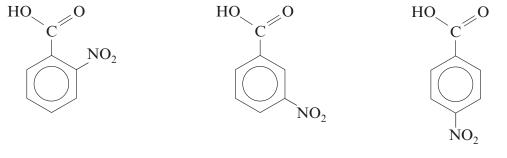
Suggest **two** factors that a scientist would consider in choosing between these different routes to produce butanoic acid on a bulk scale. [2]

- (c) Compound **B** is an isomer of formula $C_4H_8O_2$ which exists as a sweet-smelling liquid at room temperature.
 - (i) Elemental analysis of compound **B** shows that it has a composition of 54.5% carbon, 9.1% hydrogen and 36.4% oxygen, by mass. Show that this composition is consistent with the formula above. [2]

- (ii) Compound **B** shows three resonances in its ${}_{1}^{1}$ H nuclear magnetic resonance spectrum.
 - A triplet at 1.0 ppm with an area of 3
 - A singlet at 2.1 ppm with an area of 3
 - A quartet at 4.0 ppm with an area of 2

The infrared spectrum of compound **B** shows absorptions at 2981 cm^{-1} and 1750 cm^{-1} .

These are the only significant absorptions above $1500 \,\mathrm{cm}^{-1}$.

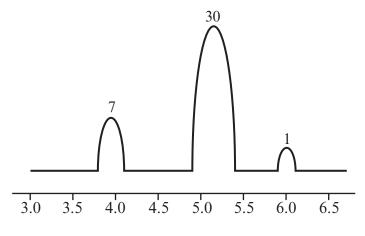

Using all the information supplied, deduce the structure of compound **B**. Give reasons in support of your answer.

[5] (*QWC*) [2]

Total [20]

5. (a) Nitrobenzenecarboxylic acids (*nitrobenzoic acids*) are useful starting materials in the preparation of many dyes and can be prepared by nitration of benzenecarboxylic acid (*benzoic acid*), C_6H_5COOH .

Many nitrobenzoic acids exist including those shown below:



2-nitrobenzoic acid

3-nitrobenzoic acid

4-nitrobenzoic acid

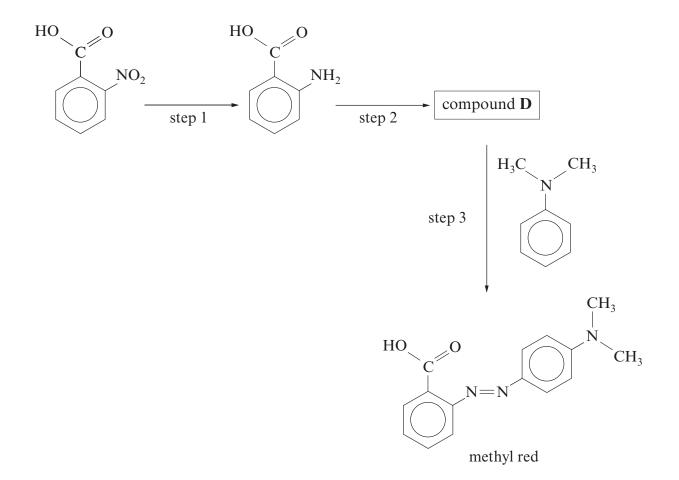
- Benzenecarboxylic acid can be nitrated under similar conditions to the nitration of benzene.
 Give the reagent(s) and condition(s) required and classify the mechanism of this reaction.
- (ii) Nitration of benzenecarboxylic acid gives a mixture of products. These can be identified by gas chromatography followed by mass spectrometry (GC-MS). The gas chromatograph for the products of this reaction is shown below, with the relative areas of each peak indicated.

Retention time/minutes

I. The main isomer produced is 3-nitrobenzenecarboxylic acid. Calculate the percentage of this isomer produced.

[2]

II. The mass spectrum of 3-nitrobenzenecarboxylic acid has main peaks at m/z 45, 46, 122 and 167. Suggest which species are responsible for each of these peaks.


- (iii) An impure sample of 3-nitrobenzenecarboxylic acid was obtained.
 - I. State how the melting temperature of the impure sample of 3-nitrobenzenecarboxylic acid would differ from that of pure 3-nitrobenzenecarboxylic acid, if at all. [1]
 - II. 3-nitrobenzenecarboxylic acid was found to be soluble in boiling water but not in cold water. It has a melting temperature of 142 °C.

Describe how impure 3-nitrobenzenecarboxylic acid could be purified by recrystallisation. Include full experimental details. [4]

(QWC) [1]

QUESTION 5 CONTINUES ON PAGE 16

(b) 2-nitrobenzenecarboxylic acid may be used as a starting material for the production of the indicator methyl red. A reaction scheme for this process is given below.

(i)	Give the reagent(s) necessary for step 1.	[1]

- (ii) Step 2 uses a mixture of sodium nitrate(III), NaNO₂, with dilute hydrochloric acid. Give the conditions required for this reaction and the structure of the product, compound **D**. [2]
- (iii) Methyl red is red below pH 4. Explain the origin of this colour. [2]
- (c) Methyl red is used to differentiate between acids and bases. Explain why amines such as ethylamine are bases. [2]

Total [20]

Total Section B [40]

GCE A level

CHEMISTRY – DATA SHEET FOR USE WITH CH4

A.M. WEDNESDAY, 13 June 2012

—

2

Infrared Spectroscopy characteristic absorption values

Bond	Wavenumber/cm ⁻¹
C—Br	500 to 600
C—Cl	650 to 800
С—О	1000 to 1300
C=C	1620 to 1670
C=0	1650 to 1750
C≡N	2100 to 2250
С—Н	2800 to 3100
О—Н	2500 to 3550
N—H	3300 to 3500

Nuclear Magnetic Resonance Spectroscopy

Candidates are reminded that the splitting of any resonance into n components indicates the presence of n-1 hydrogen atoms on the **adjacent** carbon, oxygen or nitrogen atoms.

Typical proton chemical shift values (δ) relative to TMS = 0

	· /
Type of proton	Chemical shift (ppm)
$-CH_3$	0.1 to 2.0
R—CH ₃	0.9
R—CH ₂ —R	1.3
$CH_3 - C \equiv N$	2.0
$CH_3 - C = O$ $-CH_2 - C = O$	2.0 to 2.5
	2.0 to 3.0
$O-CH_3$, $-OCH_2-R$, $-O-CH=C$	3.5 to 4.0
R—OH	4.5 *
$CH_2 = C <$	4.8
$CH_2 = C \leq O$ $R - C \leq H$	9.8 *
R-C ^{CO} OH	11.0 *

*variable figure dependent on concentration and solvent

					3			_		
	0	4.00 He 2	20.2 Neon 10	40.0 Ar Argon 18	83.8 Kr Krypton 36	131 Xe Xenon 54	(222) Rn Radon 86			
			19.0 F Fluorine 9	35.5 Cl 17	79.9 Br Bromine	127 I Iodine 53	(210) At Astatine 85		175 Lu Tutetium	(257) Lr Lawrencium 103
	9	p Block	l6.0 O 8	32.1 S Sulfur 16	79.0 Se 34	128 Te Tellurium 52	(210) PO Polonium 84		${f Yb}^{173}_{70}$	(254) No 102
	Ś	p Bl	$\frac{14.0}{N}$ Nitrogen	31.0 P Phosphorus	74.9 As Arsenic	122 Sb Antimony 51	209 Bi Bismuth 83		169 Tm 69	(256) Md Mendelevium 101
	4		12.0 C Carbon 6	28.1 Si Silicon	72.6 Ge Germanium 32	119 Sn 50	207 Pb Lead 82		167 Er Erbium 68	(253) Fm Fermium 100
	3		Boron 5	27.0 Al Aluminium 13	69.7 Ga Gallium 31	115 In Indium 49	204 T1 Thallium 81		165 Ho 67	(254) Es 99
LE				Î	65.4 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		163 Dy Dysprosium 66	Cf Cf 28 98
TAB]					63.5 Cu Copper 29	${}^{108}_{{ m Ag}}$ Ag Silver 47	197 Au Gold 79	ock	159 Tb ferbium 65	(245) Bk Berkelium 97
THE PERIODIC TABLE		Group Key relative symbol Name atomic z number		58.7 Ni Nickel 28	106 Pd Palladium 46	$\begin{array}{c} Pd \\ Palladium \\ 46 \\ 46 \\ 195 \\ Pt \\ 78 \\ 78 \end{array}$	f Block	f BIG 157 Gd Gd 64	Cm Cm 96	
			ey relative atomic mass atomic		58.9 Co 27 27	103 Rh 45	192 Ir 177		(153) Eu Europium 63	(243) Am Americium 95
	dno				lock	55.8 Fe Iron 26	101 Ruthenium 44	190 Os 76		150 Sm 62 62
	Gre		$\overset{A_{\mathrm{r}}}{\underset{\mathrm{Z}}{\overset{A_{\mathrm{r}}}{\overset{\mathrm{A}_{\mathrm{mbol}}}{\overset{\mathrm{Mame}}}{\overset{\mathrm{Mame}}{\overset{\mathrm{Mame}}}{\overset{\mathrm{Mame}}{\overset{\mathrm{Mame}}}{\overset{\mathrm{Mame}}}{\overset{\mathrm{Mame}}{\overset{\mathrm{Mame}}}{\overset{\mathrm{Mame}}{\overset{\mathrm{Mame}}}{\overset{\mathrm{Mame}}{\overset{\mathrm{Mame}}}}{\overset{Mame}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$		d B	54.9 Mn Manganese 25	98.9 Tc Technetium 43	186 Re Rhenium		(147) Promethium 61
					52.0 Cr Chromium 24	95.9 MO Molybdenum 42	$\frac{184}{W}$ Tungsten 74		144 Nd Neodymium 60	238 U 92
					50.9 V Vanadium 23	92.9 Nb Niobium 41	181 Ta Tantalum 73		141 Pr 59	(231) Pa Protactinium 91
					47.9 Ti Titanium 22	91.2 Zr Zirconium 40	Hf Hafnium 72	,	140 Ce 58	232 Th Thorium 90
				↓	45.0 Sc 21	88.9 Y Xttrium 39		(227) AC AC Actinium 89	 Lanthanoid elements 	Actinoid elements
	s Block		9.01 Beryllium 4	24.3 Mg Magnesium	40.1 Ca Calcium 20	87.6 Sr 38	137 Ba 56	(226) Ra 88	► Lant elem	 Actinoid elements
	1 s Bl	1.01 H Hydrogen	6.94 Li Lithium 3	23.0 Na Sodium	39.1 K Potassium 19	85.5 Rb Rubidium 37	133 Cs 55	(223) Fr 87		
	iod		\sim	3	4	Ś	9			
	Period		© WJEC CE	BAC Ltd.	(1094-01A	.)				