

Mark Scheme (Results)

Summer 2014

Pearson Edexcel International A Level in Statistics 3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code IA040147
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol √ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
1. (a)	165, 8	B1
(b)	Select every 6 th person {having chosen the first person by}	[1] B1
	Selecting a random number between 1 and 6 or selecting a random number and then loop back to start when you reach the end.	dB1
(b)(ii)	The <u>list</u> is alphabetical and <u>has not been sorted by gender</u> .	B1 [3]
(c)	Label male members 1- 180, female members 1 – 120 Use random numbers to select a	M1 M1
	Simple random sample of 30 male members and 20 female members	A1 [3]
(d)	 Any one of It (a stratified sample) is not biased as the members are chosen randomly. You can estimate the sampling errors (for a stratified sample) It (a stratified sample) gives more accurate estimates as it is a random process. A quota sample may be biased (whereas a stratified sample is not). It's not possible to estimate/find the sampling errors for a quota sample (whereas you can for a stratified sample) 	B1
		[1] 8
	Notes Notes	
(a) (b)(i)	B1 165 followed by 8 or 008. 1st B1 For selecting every 6th (name on the list) 2nd dB1 is dependent on the first B1 mark being awarded. For idea of using random numbers to select first from 1 to 6 or 0 to 5 (o.e. or selecting a random number between 1 and 300 and then looping back end of the list has been reached.	
(b)(ii)	Note Note Note A comment that implies the list (or sampling frame) has not been sorted B0 for "the ordered list is not truly random" Note B0 for "sample does not divide the members into gender."	by gender.
(c)	1 st M1 For suitable labelling of all 180 males <u>and</u> all 120 females. E.g. Allow labelling female members 181 – 300. Also allow labelling male members 0 – 179 and female members either 0 to 119 or 180 to 299.	
	2 nd M1 For use of random numbers to select males and females. A1 For 30 males <u>and</u> 20 females (dependent on 2 nd M1 only) Note A simple random sample of 30 males and 20 females scores 2 nd M1 and and an angle of 30 males and 20 females scores 2 nd M1 and an angle of 30 males and 20 females scores 2 nd M1 and an angle of 30 males and 20 females scores 2 nd M1 and an angle of 30 males and 20 females scores 2 nd M1 and an angle of 30 males and 20 females scores 2 nd M1 and an angle of 30 males and 20 females scores 2 nd M1 and an angle of 30 males and 20 females scores 2 nd M1 and an angle of 30 males and 20 females scores 2 nd M1 and an angle of 30 males and 20 females scores 2 nd M1 and an angle of 30 males and 20 females scores 2 nd M1 and an angle of 30 males and 20 females scores 2 nd M1 and an angle of 30 males and 20 females scores 2 nd M1 and an angle of 30 males and 20 females scores 2 nd M1 and an angle of 30 males and 30 male	A1.
(d)	Note B0 for "a stratified sample can reflect the population structure." B0 for "estimates obtained from each of the strata."	

Question Number		Scheme	Marl	ks
2.	X follows	a continuous unform distribution over $[\alpha - 3, 2\alpha + 3]$		
(a)		$u = \begin{cases} \frac{2\alpha + 3 + \alpha - 3}{2} \end{cases}$	M1	
		$=\frac{3\alpha}{2}$. So \overline{X} is a biased estimator.	A1	
	bias $\left\{ = \frac{36}{2} \right\}$	$\left(\frac{\alpha}{2} - \alpha\right) = \pm \frac{\alpha}{2}$ bias = $\pm \frac{\alpha}{2}$	B1	507
(b)	$k = \frac{2}{3}$	$\frac{2}{3}$	B1	[3]
(c)	$\alpha = \frac{2}{3}\overline{X} =$	$= \frac{2}{3}(8)$ "their k " \times 8	M1	[1]
	Max value	$c = 2\left(\frac{16}{3}\right) + 3$ $2 \times \text{"their } \alpha \text{"} + 3$ See notes	M1	
		$=\frac{41}{3}$ or $13\frac{2}{3}$ or awrt 13.7	A1	
				[3] 7
		Notes		
(a)	M1	Using the formula $\left(\frac{a+b}{2}\right)$ or getting $\frac{3\alpha}{2}$		
	A1	$\frac{3\alpha}{2}$ and concluding. Allow A1 for $\frac{3\alpha}{2} \neq \alpha$.		
	Note	Also allow A1 for bias = $\pm \frac{\alpha}{2} \neq 0$		
(c)	1 st M1	An attempt to use the sample data given to find \bar{x} and multiply by	their k .	
		Allow full expression for \bar{x} or $\frac{\sum x}{n}$.		
	Note	1 st M1 can be implied by a correct recovery leading to $\alpha = \frac{16}{3}$		
	2 nd M1	$2 \times$ "their α " + 3 where their α is a function of the sample mean - which	h found	by
		applying $\frac{\sum x}{n}$ from the data values given in the question.		
	Note	2(13) + 3 = 39 is M0M0A0		

Question Number		Scheme	Marks						
3. (a)	$H_0: \mu_A = \mu_B \qquad H_1$	$:\mu_{A}>\mu_{B}$	B1						
	s.e. = $\sqrt{\frac{35^2}{80} + \frac{28^2}{100}}$	s.e. = $\sqrt{\frac{35^2}{80} + \frac{28^2}{100}}$ { = 4.81170448}							
	$z = \frac{532 - 520}{\text{"4.8117}}$;	$z = \frac{532 - 520}{\text{"4.8117}}; = 2.4939$ $\frac{\pm (532 - 520)}{\text{"4.8117}}$							
	4.0117	awrt 2.49	A1						
		2.3263 or CR: $Z \ge 2.3263$ Critical value of 2.3263 Or a correct probability comparison.	B1						
		nt/Reject $H_0/"0.006" < 0.01/"0.994" > 0.99$]							
	 that the mean weight of grapefruit from farm A is greater than that of farm B. that the average weight of grapefruit from farm A is greater than that of farm B. that the average weight of grapefruit from farm A is greater than that of farm B. that the grocer's belief is correct. 								
			[7]						
		Notes	7						
	B1 If μ_1 ,	μ_2 used then it must be clear which refers to farm A and to farm	arm B.						
	1 st M1 Condo	one minor slips e.g. $\sqrt{\frac{35^2}{100} + \frac{28^2}{80}}$ or $\sqrt{\frac{35}{80} + \frac{28^2}{100}}$ etc.							
		rapped n or one s.d. and one variance.							
		$\sqrt{\frac{35^2}{80} + \frac{28^2}{100}}$. Or can be implied by s.e. = awrt 4.81							
	You c	endent upon the I^{st} M1. an follow through their s.e. if 1^{st} M1 mark has been awarded							
	Note M1A1	dM1 is scored for writing $z = \pm \frac{(532 - 520)}{\sqrt{\frac{35^2}{80} + \frac{28^2}{100}}}$							
	Special SC: M	11A0M0A0 for s.e. = $\sqrt{\frac{35}{80} + \frac{28}{100}}$ {= 0.847}							
	Final A1 Dependent on the first two method marks being scored. For a contextualised comment which is rejecting H_0 .								
	Contradictory statements score final A0. E.g. "significant, do not reject H_0 ".								
		d for 2^{nd} "M1A1B1" marks: Let $D = \overline{x}_A - \overline{x}_B$							
	$2.3263 = \frac{D - 0}{4.8117}$		53 / 2.32 / 2.33						
		A1: $D = \text{awrt } 11.2$							
	So, $D = 11.193$	B1: 2.3263							

Question Number					Scl	heme							Mai	rks
TVUITIOCI	Man	\boldsymbol{A}	В	C	D	E	F	G	H	I	J			
4. (a)	Rank x	1	2	3	4	5	6	7	8	9	10	A ++ + + + + + + + + + + + + + + + + +		
()	Rank w	2	7	4	3	1	9	6	5	8	10	Attempt to rank both for <i>x</i>		
	or									Ŭ		and for w.	M1	
	Man	\boldsymbol{A}	В	\boldsymbol{C}	D	E	F	G	H	I	\boldsymbol{J}	(at least four		
	Rank x	10	9	8	7	6	5	4	3	2	1	correct).		
	Rank w	9	4	7	8	10	2	5	6	3	1			
	For finding the difference between each of the ranks $\sum d^2 = 1 + 25 + 1 + 1 + 16 + 9 + 1 + 9 + 1 + 0; = 64$ For finding the difference between each of the ranks and evaluating $\sum d^2$.									M1				
												$\sum d^2 = 64$	A1	
	$r_s = 1 - \frac{60}{100}$	64) ; =	= 0.61	21212	•••				Us	sing 1	$-\frac{6\sum_{i=1}^{3}}{10(i)}$	$\frac{\sum d^2}{99}$ with their $\sum d^2$	dM1;	
	3 100	(99)										$\frac{101}{165}$ or awrt 0.612	A1	F. # 3
(b)	$H_0: \rho = 0$	и.	a > 0							Dath	hvmot	thoses stated compatity	D 1	[5]
(b)	0 -	•		26 00	CD.	> (5626			Бош		theses stated correctly	B1	
	Critical Val		= 0.30	50 01	CK.	$r_s \neq 0$					C1	ritical value of 0.5636	B1	
		$ce r_s =$	- 0.61	21 li	es in f	he CR								
		sult is s			C5 <u>111</u> t	ne <u>ere</u>						see notes	M1	
		ect H			H.)									
	conclude th	at ther	e is a	positiv	e corr	elation	betwo	een				Conclusion in context	A1	
	systolic <u>blo</u>	oa pre	ssure a	ana <u>we</u>	eignt.									[4]
(c)	Both either													!7.1.1
. ,	• Cri	tical V	alue <i>r</i>	= 0.54	194									
	• CR	: <i>r</i> ≥	0.549	4										
	and either													
	• Sin	ce r =	0.511	4 <u>doe</u>	s not 1	ie in tł	ne CR							
		sult is 1											M1	
		not re		··										
	Conclude th	nat the	re is <u>n</u>	o posit	tive co	<u>rrelati</u>	<u>on</u>				Cont	text not required here.	A1	[2]
(d)	 Either A comment that conveys both the ideas "as x increases, w increases" and "the relationship is non-linear" "There is a positive correlation" and "the relationship is non-linear" equivalent. Data is not (bi-variate) normal 								В1					
														[1] 12

		Notes
4. (a)		
	3 rd dM1	is dependent on I^{st} MI for use of $1 - \frac{6\sum d^2}{10(99)}$ with their $\sum d^2$
	Note	If a candidate finds $\sum d^2 = 266$, leading to $r_s = \text{awrt} - 0.612$ then award M1M1A1M1A1.
(b)	1st B1	Both hypotheses stated in terms of ρ .
	M1	For a correct statement relating their r_s ($ r_s < 1$) with their c.v. where their c.v. < 1
	A1	For a contextualised comment which is rejecting H_0 , which must mention "positive correlation", "blood pressure" and "weight". (Use of "association" is A0.) Follow through their r_s with their c.v. (provided their c.v. < 1)
	Two-tailed test	Applying a two-tailed test scores a maximum of B0B1M1A0
		So Award SC B0B1 for H_0 : $\rho = 0$, H_1 : $\rho \neq 0$ followed by critical value $r_s = (\pm) 0.6485$ and allow access to the M1 mark only.

Question Number			S	Scheme			Ma	rks
5. (a)	H_0 : There is no association between type of drink and gender (independent) Correct H_1 : There is an association between type of drink and gender (dependent) hypotheses							
	Expected	Tea	Coffee	Hot	Total	Some attempt at (Row Total)(Column Total)		
				Chocolate	-	(Grand Total)	M1	
	Male	46.53	34.31	13.16	94	Can be implied by		
	Female Total	52.47 99	38.69	14.84	106	at least one correct E_i to 1d.p.		
	1 otal	99	73	28	200	All expected frequencies are correct.	A1	
						Condone exact fractions. At least 2 correct terms for		
	Observed	Expected	$\frac{(O-E)}{E}$	$\frac{O^2}{E}$ $\frac{O^2}{E}$		$\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ or correct	dM1	
	57	46.53	2.3559	69.825	9	expressions with their E_i .	GIVII	
	26	34.31	2.0127	19.702	7	Accept 2 sf accuracy		
	11	13.16	0.3545	9.194	5	for the dM1 mark.		
	42	52.47	2.0892	33.619	2	At least 5 correct $(O - F)^2 \qquad O^2$		
	47	38.69	1.7849	57.094	9	$\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ terms to	A1	
	17	14.84	0.3144	19.474	4	either 2 dp or better.		
		Total	s 8.9116	208.91	16	Allow truncation.		
	$X^2 = \sum \frac{O}{O}$	$\frac{-E)^2}{E}$ or	$\sum \frac{O^2}{E}$ -	200 ;= 8.911	6	For applying either $\sum \frac{(O-E)^2}{E} \text{ or } \sum \frac{O^2}{E} - 200$	dM1	
		_	_			8.9 or awrt (8.88 – 8.91)	A1	
	$\nu = (2-1)(3$	-1) = 2				$\nu = 2$	B1	
	$\chi_2^2(0.05) = 5$	$6.991 \Rightarrow C1$	R: $X^2 \geqslant 5$.	991		5.991 or ft $\chi^2_{\text{their }\nu}(0.05)$	B1ft	
	[in the CR/sig	gnificant/R	eject H ₀]					
	conclude that drink preferre independent.)	ed and geno		between type are not	e of	A correct conclusion in context which is based on <i>their</i> X^2 -value and <i>their</i> χ^2 -critical value.	A1	[10]
(b)	$\chi_2^2(0.005) =$	10 597 ⇒	$CR \cdot X^2 >$: 10 597		Critical value of 10.597	B1	[10]
(6)	[not in the CI					Citical value of 10.337		
	Either	tonot signii	icani, do no	i reject Π_0				
	Conc and gThe c	gender (or t conclusion	hey are inde			been rejected Any one of these.	B1	
	іп ра	rt (a)).						[2] 12

		Notes
5. (a)	1 st B1	For both hypotheses. Must mention "drink" and "gender" or "sex" at least once. Use of "relationship" or "correlation" or "connection" is B0.
	2 nd dM1	Dependent on the first method mark.
		At least 2 correct terms (as in 3^{rd} or 4^{th} column) or <i>correct expressions</i> with their E_i
	2 nd A1	All correct terms to either 2 d.p. or better. Allow truncated answers.
	3^{rd} dM1	Dependent on the second method mark.
		For applying either $\sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 200$
	3 rd A1	8.9 or awrt (8.88 – 8.91)
	2 nd B1	v = 2 This mark can be implied by a correct critical value of 5.991
	Note	If 8.9 or awrt $(8.88 - 8.91)$ is seen (from a calculator) without the expected frequencies
		stated then award special case M0A0M1A1M1A1.
	Final A1	Dependent on the third method mark.
		A correct contextualised conclusion which is rejecting H_0 .
		Must mention "drink" and "gender" or "sex".
		No follow through. If e.g. hypotheses are the wrong way round A0 here.
	Note	Contradictory statements score A0. E.g. "significant, do not reject H_0 ".
	Note	Condone "relationship" or "connection" here but not "correlation".
		e.g. "There is evidence of a relationship between grades and gender"
	Note	Full accuracy gives $X^2 = 8.911619$ and p-value 0.0116 to 0.0117

Question Number			Scheme				Mar	·ks	
6. (a)	$\hat{p} = \frac{0(2) + 1(21) + 2(45) + 3(42) + 4(12) + 5(3)}{8(2 + 21 + 45 + 42 + 12 + 3) \text{ or } 8(125)} \left\{ = \frac{300}{1000} \right\} = 0.3 \text{ (*)}$ Answer is given. See notes.								
(b)	$r = 125 \times {}^{8}C_{3}$	$(0.3)^3(0.7)^5$	{= 31.765	23} (formula	a)			[2]	
	or $r = 125 \times (0.86)$	059 - 0.55	18) {= 31.7	625} (tables)					
	s = 125 - (7.21 +	24.71 + 37	.06 + their	r + 17.02 + 5.8	33) {= 1.40477 or 1	1.4075}	M1		
	or $s = 125 \times (1 - 125)$	0.9887) {=	= 1.4125}						
	r = 31.76523 or 3	31.7625 or	31.7575		r = awrt 31.7	7 or $r = \text{awrt } 31.76$	A1		
	s = 1.40477 or 1.	4075 or 1.4	4125		s = 1.4 or awrt1.	40 or $s = awrt 1.41$	A1		
								[3]	
(c)	# failed O_i	E_{i}	Comb	Comb	$\frac{(O-E)^2}{E}$	$\frac{O^2}{E}$			
	tasks		O_i	E_{i}					
	0 2	7.21	2	7.21	3.7648	0.5548			
	1 21	24.71	21	24.71	0.5570	17.8470			
	2 45	37.06	45	37.06	1.7011	54.6411			
	3 42	31.77	42	31.77	3.2941	55.5241			
	4 12	(31.76) 17.02	12	(31.76) 17.02	(3.3016) 1.4806	(55.5416) 8.4606			
	5 3	5.83	12	7.23	2.4748	1.2448			
		1.40	3	(7.24)	(2.4831)	(1.2431)	M1		
	$\geqslant 6$ 0	(1.41)	3	{7.25}	(2.1031)	(1.2 (31)	M1		
				Totals	13.2724 (13.2882)	138.2724 (138.2882)			
						For applying either			
	$X^2 = \sum \frac{(O - E)}{E}$	$\frac{0^2}{2}$ or \sum	$\frac{O^2}{E} - 125$;= awrt 13.3	$\sum \frac{(O-E)^2}{E}$	or $\sum \frac{O^2}{E} - 125$	dM1		
						awrt 13.3	A1		
	v = 6 - 1 - 1 = 4					see notes	B1 ft		
	$\chi_4^2(0.05) = 9.488$	⇒ CR: X	$\zeta^2 \geqslant 9.488$			for their $\chi_k^2(0.05)$, $-1-1$ from their n .	B1		
	H ₀ : Binomial dis	stribution is	a good(or	suitable) model	l (or fit).				
	H ₁ : Binomial dis				,	Correct hypotheses	B1		
	[in the CR/signific								
		ourig regoet	110 1	Δ	correct conclusion (context not required			
	Binomial distribut	tion is not a	cuitabla m		here) which is based	-	A1		
	Dinomiai distribu	non 18 HOU a	i suitable III	ouei.		$r \chi^2$ -critical value.	AI		
					and met	. A Clitical value.		[8]	
(d)	Following from a	correct con	clusion in r	oart (c), a comm	nent conveying eithe	er		r.∾1	
	• p is not co		1		, ,		B1		
	 employer 	's belief is	not justified	l .			וט		
								[1] 14	

		Notes
6. (a)	M1	Must show clearly how to get either 300 or 1000.
	A1 cso	Showing how to get both 300 and 1000 and reaching $p = 0.3$
(b)	M1	For any correct method (or a correct expression) for finding either <i>r</i> or <i>s</i> .
	A1	r = awrt 31.77 or r = awrt 31.76
	A1	s = 1.4 or awrt 1.40 or $s = awrt 1.41$
(c)	1 st M1	For an attempt to pool 5 failed tasks and ≥ 6 failed tasks ONLY.
	Note	Give 1 st M0 for pooling 0 failed tasks and 1 failed task.
	2 nd M1	For an attempt at the test statistic, at least 2 correct expressions/values
	ard as a	(to awrt 2 d.p. or truncated 2 d.p.)
	3 rd dM1	Dependent on the second method mark.
		For applying either $\sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 125$
	1st A1	awrt 13.3
	1st B1ft	For their evaluated $n-1-1$. i.e. realising that they must subtract 2 from their n .
	2 nd B1	For a correct ft for their $\chi_k^2(0.05)$, where $k = n - 1 - 1$ from their n .
	3 rd B1	Must have both hypotheses and mention Binomial at least once.
		Inclusion of 0.3 for p in hypotheses is B0 but condone in conclusion.
	Final A1	Dependent on the 2 nd and 3 rd Method marks only.
		A correct conclusion (context not required) which is rejecting H_0 .
	Note	No follow through on their hypotheses if they are stated the wrong way round.
	Note	Contradictory statements score A0. E.g. "significant, do not reject H_0 ".
	Note	Condone mentioning of $Bin(8, 0.3)$ in conclusion
	Note	Full accuracy gives a combined expected frequency of 7.245956, $\frac{(O-E)^2}{E} = 2.4880$,
		$\frac{O^2}{E} = 1.2421$, $X^2 = 13.28333$
	Note	p-value for the test is 0.0099 to 0.0100
	Note	No combining gives $X^2 = 13.58$
	Note	Combining $0/1$ and $4/5/\geqslant 6$ gives $X^2 = 11.02$
	11010	Combining $0/1$ and $4/3/\geqslant 0$ gives $X = 11.02$

Question Number	Scheme	Marks
7. (a)	$X = 4Y - 3W$, $Y \square N(40, 3^2)$, $W \square N(50, 2^2)$; Y, W are independent.	
	$\{E(X) = 4E(Y) - 3E(W) = 4(40) - 3(50)\} \Rightarrow E(X) = 10$ $E(X) = 10$ (seen or implied)	B1
	$\operatorname{Either} (4^2) \operatorname{Var}(Y) + O \operatorname{Var}(W)$ $\operatorname{Either} (4^2) \operatorname{Var}(Y) \text{ or } + (3^2) \operatorname{Var}(W)$	M1
	Var(X) = 16 Var(Y) + 9 Var(W) For adding the variances	M1
	${Var(X) = 16(9) + 9(4)} \Rightarrow Var(X) = 180$ $Var(X) = 180$	A1
	$\{ \text{So } X \square \text{ N}(10, 180) \}$	
	$\{P(X > 25) = \}$ $P\left(Z > \frac{25 - 10}{\sqrt{180}}\right)$ Standardising (\pm) with their mean and their standard deviation	М1
	and their standard deviation $\sqrt{180}$	M1
	$= P(Z > 1.11803) $ awrt ± 1.12	A1
	= 1 - 0.8686	
	= 0.1314 (or 0.131777) awrt 0.131 or awrt 0.132	A1
	3	[7]
(b)	$A = \sum_{i=1}^{5} Y_i$, $C \square N(115, \sigma^2)$; $P(A - C < 0) = 0.2$; A, C are independent.	
	$\{E(A-C) = 3E(Y) - E(C) = 3(40) - (115)\} \Rightarrow E(A-C) = 5$ $E(A-C) = 5$	B1
	Var(A - C) = 3Var(Y) + Var(C) 3Var(Y) and a +	M1
	$\left\{ \operatorname{Var}(A-C) = 3(9) + \sigma^2 \right\} \Rightarrow \operatorname{Var}(A-C) = 27 + \sigma^2 \qquad \operatorname{Var}(A-C) = 27 + \sigma^2$	A1
	$\{\operatorname{So} A - C \square \operatorname{N}(5, 27 + \sigma^2)\}$	
	$\{P(A-C<0)=0.2\} \Rightarrow P\left(Z<\frac{-5}{\sqrt{27+\sigma^2}}\right)=0.2$	
	$\left(\begin{array}{c} \sqrt{27+\sigma^2} \end{array}\right)$	
	Standardising (\pm) with their mean and their standard deviation	
	$\frac{-5}{\sqrt{27 + \sigma^2}} = k \ (= -0.8416)$ which is in terms of σ^2 and setting the result equal to k , where $ k $ is in the interval [0.84, 0.85].	M1
	$\sqrt{27 + \sigma^2}$ where $ k $ is in the interval [0.84, 0.85].	
	± 0.8416 or awrt ± 0.8416	B1
	Correct equation . See notes	A1
	$\sigma^2 = \left(\frac{-5}{-0.8416}\right)^2 - 27 \implies \sigma^2 = \dots$ Squaring and rearranging leading to a positive value for σ^2 .	dM1
	$\sigma^2 = 8.2962 \ (= 8.4308 \text{ from using } -0.84)$ awrt 8.3 or awrt 8.4	A1 cso
	(= 8.2945 from calculator, so need awrt 8.29 for full marks if no prior working is shown.)	[8] 15
(a)	Note Condone applying reversed variances, e.g. $16(4) + 9(9)$ for the first 2 method marks.	
	Note $Var(X) = 180$ with no working gets M1M1A1	
	Note $Var(X) = 48$ with no working gets M0M1A0	
	Note $Var(X) = 108$ with no working gets M1M0A0	
	Note $Var(X) = 24$ with no working gets M0M0A0	
(b)	2 nd M1 Allow $\frac{\pm \text{ their } E(A-C)}{\sqrt{\text{their } Var(A-C)}} = k$, where $ k $ is in the interval (0.84, 0.85).	
	2 nd B1 For either -0.8416 or 0.8416	
	2nd A1 E.g. Allow $\frac{-5}{\sqrt{27+\sigma^2}} = [-0.85, -0.84]$ or $\frac{5}{\sqrt{27+\sigma^2}} = [0.84, 0.85]$	
	3 rd M1 Dependent on the 2 nd M1 mark being awarded.	