Mark Scheme 4736 January 2007

1	(i)	10 4 2 3 5	M1	First bundle starting with 10 4 2 and has at least	
1	(1)	13 7 2 2	IVII	one more bag in it	
		4 5 8 5 3	M1	Second bundle correct	
					[2]
	(**)	10 5 5 3	A1	All bundles correct	[3]
	(ii)	Decree de la contraction		A value missing from written out list may be	
		Decreasing order:	3.61	treated as a misread and lose the A mark only	
		13 10 10 8 7 5 5 5 5 5 4 4 3 3 3 2 2 2	M1	Sorting into decreasing order (may be implied	
		10.10.0		from first bundle starting with 13)	
		13 10 2	3.64	If each row sorted, award first M1 only	
		10 8 7	M1	Second and third bundles correct	
		5 5 5 5 5			503
-		4 4 3 3 3 2 2	A1	All bundles correct	[3]
	(iii)	Each person has roughly the same number of bags	B1	Saying that (i) gives a more even/equal allocation	
		or the total weights are more evenly spread		Five bundles in either part Θ B0	[1]
				Total =	7
2	(i)	a = number of apple cakes	B1	Identifying variables as 'number of cakes'	
		b = number of banana cakes	B1	Indicating a as apple, b as banana and c as cherry.	
		c = number of cherry cakes			[2]
	(ii)	$4 \times 30 = 3 \times 40 = 4 \times 30 = 120$	M1	Any reasonable attempt	
		$\frac{a}{30} + \frac{b}{40} + \frac{c}{30} = 30 \times 40 \times 30$			
		$4a + 3b + 4c \le 120$ or $X = 4$, $Y = 3$, $Z = 4$	A1	4, 3 and 4	[2]
	(iii)	$a + b + c \ge 30$ (or $a + b + c = 30$)	B1	Constraint from total number of cakes correct	
	, ,	$0 \le a \le 20, \ 0 \le b \le 25, \ 0 \le c \le 10$	M1	All three upper constraints correct	
		(no need to say 'all integer')	A1	All three lower constraints correct also	[3]
	(iv)	4a+3b+2c	B1	Any multiple of this expression	[1]
				Total =	8
3	(i) a	$9 \times 2 = 18$	B1	18	[1]
	b	Since the graph is simple, the two nodes of order	B1	Explicitly using the fact that the graph is simple	
		5 are each connected to every other node and	B1	Deducing that each node has order at least 2	
		hence every node has order at least 2 (exactly 2)		or that all other nodes have order 2	
				A diagram on its own is not enough.	[2]
 	с	$3 \times 5 = 15$ and $18 - 15 = 3$	B1	Or, the nodes of order 5 contribute $5+4+3=12$	[-]
	-	but the orders of the other nodes must sum to at		arcs	
		least $3\times3 = 9$ (must sum to more than 3)	B1	But there are only 9 arcs available	[2]
F	(ii)	•	M1	A simply connected graph with 6 nodes and 9	
	\ /	or equivalent		arcs, with at least one odd node	
		or equivalent	A1	For such a graph with node orders 1, 3, 3, 3, 3, 5	[2]
F	(iii)	9—9	M1	A simply connected graph with 6 nodes and 9	[,
	()	or equivalent	1.22	arcs, with at least one even node	
		or equivalent	A1	For such a graph with node orders 2, 2, 2, 4, 4, 4	[2]
				Total =	

(i)				
	1 4 5 3 2 7 6		FIRST THREE MARKS ARE FOR WORK ON	
			THE TABLE ONLY	
	A 0 4 5 3 2 5 6	M1	(Starting by) choosing row E in column A	
	B 4 0 1 2 4 7 6			
	C 5 1 0 3 4 6 7	3.61 1		
	D 3 2 3 0 2 6 4	M1 dep	Choosing more than one entry from column A	
	E 2 4 4 2 0 6 6			
	F 5 7 6 6 6 0 10	A1	Correct entries chosen (or all transposed)	
	G 6 6 7 4 6 10 0		(or an aransposed)	
	Order: A E D B C G F			
		B1	Correct order, listed or marked on arrows or table,	
	Minimum spanning tree:		or arcs listed AE ED DB BC DG AF	
	A P C			
		B1	Tree (correct or follow through from table,	
		ы	provided solution forms a spanning tree)	
	D			
	E F G			
	Total weight: 16 (or 1600 m)			
		B1	16 or 1600m (or follow through from table or	
			diagram, provided solution forms a spanning tree)	[6]
(ii)	Travelling salesperson (problem)	B1	Identifying TSP by name	[1]
(iii)	Two shortest arcs from H : $12 + 13 = 25$	B1	12 + 13 or 25, or implied from final answer	
	25 + 16 = 41	M1	Adding their 25 to their 16 or for 41 (must be	
	4100		using two arcs from H)	F03
(:)	4100 m H A E D B C F G H	A1	4100 m or 4.1 km (correct and with units)	[3]
(iv)	п а Е D в С F G H	M1 A1	(H) A E D B C Correct tour	
	12+2+2+2+1+6+10+16 = 51	M1	A substantially correct attempt at sum	
	5100 m	A1	5100m or 5.1 km (correct and with units)	[4]
			Total =	14

(i)	D E			
	$ \begin{array}{c cccc} B & E & I \\ \hline 4 & 4 & \hline 8/9 & 7 & \hline 7 & \hline 7 \end{array} $	M1	Correct temporary labels at B to G , no extras	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Correct temporary labels at H to J , no extras	
	11/10 8 11/10 8 9 8	A1	All temporary labels correct	
		B1	Order of becoming permanent correct (follow through their permanent labels)	
	3 3 5 5 7/6 6 7 6	B1	All permanent labels correct	
	Note: H may have only a temporary label if left until last			
	Route: <i>A D G J K</i> Number of speed cameras on route: 8	B1 B1	Correct route 8 (cao)	
(ii)	Odd nodes: A I J K	M1	Identifying or using A I J K	T
	AI = 7 $AJ = 6$ $AK = 8JK = \frac{2}{9} IK = \frac{4}{10} IJ = \frac{6}{14}Repeat AI and JK \Rightarrow ABBI and JK$	A1 A1	Weight of AI + weight of $JK = 9$ Weight of AJ + weight of $IK = 10$ (follow through weight of AI , AJ from (i) if necessary)	
	Route (example): KJDABIKJGKHGFHEFCGDCABC EBIEK Number of speed cameras on route: 81	M1 A1 B1	A list of 28 nodes that starts and ends with <i>K</i> Such a list that includes each of <i>AB</i> , <i>BI</i> , <i>JK</i> (or reversed) twice 72 + weight of their least pairing	
(iii)	The only odd nodes are I and J so she only needs to repeat $IJ = 6$	B1	Identifying <i>I</i> and <i>J</i> or <i>IJ</i> (not just implied from 6 or 72+6 or 78)	
	72 + 6 = 78	M1 A1	Correct calculation (may be implied from 78)	
<u> </u>	= 10	Al	 Total =	<u> </u>

(i) P	x v z s t	B1	Correct use of two slack variable columns	
1		B1	\pm (-3 5 -4) in objective row	
0		B1	1 2 -3 12 and 2 5 -8 40 in constraint rows	[3]
(ii)	The entries in rows 2 and 3 of the z column are negative	B1	Entries for potential pivots are not positive	L ₂
	Pivot on 1 in x column x and z columns have negative entries in obj. row	B1	Correct pivot choice (cao) (stated or entry ringed)	
	but no value in z column is positive so choose x	D.1	Follow through their table	
	$12 \div 1 = 12, 40 \div 2 = 20$ Least positive ratio is 12 so pivot on the 1	B1	'Negative in top row for x' and a correct explanation of choice of row 'least ratio $12 \div 1$ '	[3]
(iii)	Least positive ratio is 12 so proof on the 1		Follow through their tableau if possible	L ^o .
P	x y z s t	M1	Correct method evident	
1 0 0	1 2 -3 1 0 12	A1	Correct tableau (ft if reasonable and possible, column representing RHS of equations must contain non-negative entries)	
	x = 12, y = 0, z = 0	B1	Correct non-negative values for their tableau	[3
(iv)	z can increase without limit and increasing z will increase P	B1	Discussing the effect of increasing <i>z</i> Not just referring to pivoting in tableau	[1
(v)	Initial tableau is unchanged except entry in z col of obj. row becomes +40 First iteration tableau is also unchanged except for this entry which becomes 31	B1 B1 B1	Describing change to obj. row of initial tableau or showing tableau that results Identifying 31 instead of -13 (cao) No other changes	
	36	B1	36 stated (cao)	[4
(vi)	Adding the constraints gives $3x - 5y + 7z \le 52$ so $Q \le 52$	B1	52	[1
(vii)	$x - 3z = 12$ and $2x + 10z = 40$ (Accept \leq) 0 $0z + 6z = 40 - 24$	M1 M1	Eliminating <i>y</i> terms (may be implied) Trying to solve simultaneous equations	
		A1	Correct values (may imply method marks)	[3
<u> </u>			Total =	18