

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

JANUARY 2012

PMT

GCE Chemistry – CH1

SECTION A

Dynamic equilibrium: Reversible reaction where the **rate** of forward and reverse reactions is equal (1) [2]

Q.4 (a)

_	(~)						
			1	2	3	4]
	Vol	ume used / cm ³	20.75	20.20	20.10	20.30	
							[1]
	(h) 2(1.20 cm^3					[1]
	(b) 20	5.20 Cm					ניז
Q.5	А						[1]
Q.6	(a) Ratio of C:H is 1:1.33 (1)						
	Emp. Formula = C_3H_4 (1)						
	(b)	Molecular formula = C_9H_{12}					

SECTION A TOTAL [10]

群尧咨询

PMT

SECTION B

Q.7	(a)	(i)	Temperature: 298K / 25°C (1) Pressure: 1 atm / 101.325 kPa or 100 kPa (1) [2]				
		(ii)	Hydrogen gas is an element in its standard state	[1]			
		(iii)	$\Delta H = \Delta H_f (C_5 H_{12}) + 5 \Delta H_f (H_2 O) - 5 \Delta H_f (CO) - 11 \Delta H_f (H_2) $ (1)				
			$\Delta H_{f} (C_{5}H_{12}) = -1049 - 5 (-286) + 5 (-111) $ (1)				
			$\Delta H_{\rm f} (\rm C_5 H_{12}) = -174 \ \rm kJ \ \rm mol^{-1} \qquad (1)$	[3]			
	(b)	(i)	Catalyst in different state to reactants	[1]			
		(ii)	Catalysts provide an alternative route (1) with a lower activation energy (1)	[2]			
		(iii)	Lower temperature or less time so less energy needed / Can make alternative production method possible with sustainable starting materia or less waste products	als [1]			
		(iv)	At higher temperatures particles have more energy (1)				
			More collisions have energy above activation energy (1)				
			(Can obtain these two marks from correctly labelled Boltzmann ener distribution plot with two temperature lines (1) and Activation energy (1))	gy ,			
			Successful collisions occur more frequently (1) – 3 max	[3]			
			QWC: selection of a form and style of writing appropriate to purpose and to complexity of subject matter	[1]			
	(c)	(i)	No effect (1)				
			Same number of (gas) molecules on both sides of reaction (1)	[2]			
		(ii)	Lower yield of hydrogen (1)				
			Reaction shifts in endothermic direction to (try to counteract increase in temperature) (1)	ə [2]			
		(iii)	No effect	[1]			

Total [19]

PMT

Q.8	(a)	Be: 800 - 1000 kJ mol ⁻¹ (1)				
		Ne: 1	700 – 2300 cm ⁻¹ (1)	[2]		
	(b)	Be (g)	$ ightarrow Be^+(g) + e$	[1]		
	(c)	(i)	Greater nuclear charge on He (1)			
			No increase in shielding / Outer electrons same distance from nucl / Outer electrons in same shell (1)	eus [2]		
		(ii)	Outer electron in O is paired in orbital / Outer electron for N is unpaired (1)			
			Repulsion between paired electrons makes it easier to remove out electron of oxygen (1)	er [2]		
	(d)) (i)	Electrons excited to a higher energy level (1)			
			Energy levels are quantised (1)			
			Electrons drop from higher to lower energy levels (1)			
			Energy is emitted as light (1) – 3 max	[3]		
			Lines represent the energy emitted (1) when an excited electron dr back (1) from one energy level to another (1)	ops		
			QWC: legibility of text, accuracy of spelling, punctuation and gramic clarity of meaning [1]	mar,		
		(ii)	Find frequency of convergence limit (1) for Lyman series (1)			
			lonisation energy is given by E=hf / Energy \propto frequency (1)	[3]		

Total [14]

Q.9

PMT

(a) $M_{\rm r}$ (PbS) = 239.1 M_r (PbO) = 223 (1) Moles of PbS = $20,000 \div 239.1 = 83.65$ moles (1) Mass of PbO = $83.65 \times 223 \div 1000 = 18.7 \text{ kg}(1)$ [3] (b) (i) Sulfur dioxide: Acid rain (1) Carbon dioxide: Climate change / global warming / acidification of oceans (1) [2] (ii) Ι. Sum of M_r of reactants = 223 + 28 = 251 (1) Atom economy = $(207 \div 251) \times 100 = 82.5\%$ (1) [2] (ii) Π. Method 1 as higher atom economy means less waste / more useful product [1] (c) Symbol = Po(1)Mass number = 212(1)[2] (i)

(ii) All three arrows labelled correctly, as shows below, gives two marks

Any two arrows labelled correctly gives one mark [2]

(iii) γ -radiation is high energy / frequency electromagnetic waves (1)

It affects neither atomic number nor mass number / it changes neither the number of protons nor neutrons (1) [2]

(iv) 31.8 hours = 3 half lives (1)

Mass remaining after 3 half lives = 3mg (1)

(d)
$$A_r = [(206.0 \times 25.48) + (207.0 \times 22.12) + (208.0 \times 52.40)] \div 100 (1)$$

 $A_r = 207.3(1)$

1 mark for correct significant figures (answer must be reasonable) [3]

Total [19]

[2]

群尧咨询

PMT

Q.10	(a)	(i)	M _r (Cu	$SO_4.5H_2O) = 249.7$	[1]
		(ii)	I.	Moles of copper(II) sulfate	
				= 0.250 x 250/1000 = 6.25 x 10 ⁻² moles (1)	
				Mass = $6.25 \times 10^{-2} \times 249.7 = 15.6 \text{ g} (1)$	[2]
			II.	1 mark each for:	
			• • • •	Weighing method Dissolve copper sulfate in a smaller volume of distilled wate Transfer to 250.0 cm ³ volumetric / standard flask Use of funnel Wash funnel / glass rod / beaker with distilled water into volumetric flask Add distilled water up to mark Shake solution / mix thoroughly 5 max	er [5]
			QWC: specia	organisation of information clearly and coherently; use of list vocabulary where appropriate	[1]
	(b)	(i)	Powde (1)	er has a greater surface area (1) so gives a higher rate of rea	action [2]
		(ii)	Extrap at 180	olate lines from start (level at 21.3°C) and end (through p- -270 seconds) (1)	oints
			Tempe	erature rise = 6.0°C (Range 5.8-6.2°C) (1)	[2]
		(iii)	I.	Moles = $0.250 \times 0.05 = 1.25 \times 10^{-2}$ moles	[1]
			II.	Zinc is the limiting reagent / Copper(II) sulfate is in exces	ss [1]
			III.	$\Delta H = -(50)x \ 4.18 \ x \ 6.0 \div (6.12 \ x \ 10^{-3}) \ (1)$	
				$\Delta H = -204902 \text{ J mol}^{-1}$	
				$\Delta H = -205 \text{ kJ mol}^{-1} (1)$	[2]
			IV.	Enthalpy measures chemical energy, and as heat energy increases, chemical energy must decrease	y [1]
				Το	tal [18]

SECTION B TOTAL [70]