A LEVEL

Physics

PHA3/B3/X - Investigative and practical skills in AS Physics Mark Scheme

2450/2455
June 2015

Version 1: Final Mark Scheme

PHYAB3: Practical and Investigative Skills in AS Physics

Section A Task 1

1	(a) and (b)	readings:	I_{a} in range 780 mm to 820 mm and I_{b} in range 180 mm to 220 mm ; both dimensions to nearest $\mathrm{mm} \checkmark$ I_{a} and I_{b} both to mA , both to 0.1 mA , or both to 0.01 mA in range $19(.00) \mathrm{mA}$ to $21(.00) \mathrm{mA}$; V_{a} and V_{b} both to 0.1 V or both to $0.01 \mathrm{~V} \checkmark$	2
		method and	$r_{\mathrm{a}} \text { and } r_{\mathrm{b}} \text { calculated from } \frac{p d}{\text { current } \times \text { length }} \checkmark$ (method mark only; don't penalise for POT error)	1
1	(c)	result:	r_{a} in range $140 \Omega \mathrm{~m}^{-1}$ to $170 \Omega \mathrm{~m}^{-1} \checkmark$ (allow other units as long as the value given is appropriate, eg $1.40 \Omega \mathrm{~cm}^{-1}$; condone Ω withhold mark for AE in calculation of r_{b}) max 4sf: note that this is the only part of Section A where excessive sf are penalised	1
1	(d)	explanation:	(percentage uncertainty in $r_{\mathrm{a}}<r_{\mathrm{b}}$ because) percentage uncertainty in $r=$ sum of the percentage uncertainties in length, pd and current ${ }_{1} \checkmark$ current: I_{a} is about the same as I_{b} (both about 20 mA) so percentage uncertainty in current l_{a} is same as percentage uncertainty in current $I_{\mathrm{b}} 2^{\checkmark}$ length of wire: I_{a} is greater than I_{b} so percentage uncertainty in length I_{a} is less [smaller] (by about a factor of 4) than the percentage uncertainty in length $I_{b}{ }_{3} \checkmark$ pd across wire: V_{a} is greater than V_{b} so percentage uncertainty in pd across wire V_{a} is less [smaller] (by about a factor of 4) than the percentage uncertainty in $V_{b 4}{ }^{\checkmark}$	4 MAX 3

2	(a)	data: range and precision	5 sets of I_{1} and V_{1} and 5 sets of I_{2} and V_{2}, readings sensible (eg for similar I_{2} and I_{1} values, $V_{1}>V_{2}$) (do not penalise for extra sets but insist all tabulated points are plotted) minimum I_{1} value $\leq 20 \mathrm{~mA}$, maximum I_{2} value $\geq 75 \mathrm{~mA}$; I values all to mA , all to 0.1 mA or all to 0.01 mA ; V values all to 0.1 V or all to $0.01 \mathrm{~V} \checkmark$ (if precision is inconsistent here and in question 1 do not deduct for a second time)	2
2	(b)	graph:	suitable vertical scale: points should cover at least half the grid vertically, ie at least 6 major grid squares (withhold mark for use of a difficult or non-linear scale, wrongly-marked false origin etc) 10 points plotted correctly, (minimum of) 5 on each line (check at least one on each line, including any anomalous); two ruled best fit lines of positive gradient \checkmark (maximum acceptable deviation from best fit lines is 2 mm , adjust criteria if graph is poorly scaled; withhold mark if line(s) is/are poorly marked)	2
2	(c)(i)	method for $R_{\text {X }}$:	evidence of valid attempt at calculation of G_{1} based on the gradient of the I_{1}, V_{1} plot [direct calculation of $\left(G_{1}\right)^{-1}$ is acceptable]; R_{X}, resistance of X , determined from $\left(G_{1}\right)^{-1}{ }_{1} \checkmark$	1
		result for R_{x} :	result for $R_{\text {X }}$ in range 78Ω to $86 \Omega_{2} \checkmark$	1
2	(c)(ii)	gradients:	hypotenuse of each gradient triangle $\geq 100 \mathrm{~mm}_{1} \checkmark$	1
		method for R_{Y} :	evidence of valid attempt at calculation of G_{2}, based on the gradient of the I_{2}, V_{2} plot [direct calculation of $\left(G_{2}\right)^{-1}$ is acceptable]; $R_{\text {circuit }}$, resistance of (parallel) circuit, determined from $\left(G_{2}\right)^{-1}$; R_{Y}, resistance of Y , determined from $\left(\frac{1}{R_{\text {circuit }}}-\frac{1}{R_{\mathrm{X}}}\right)^{-1}$ $\left[\left(G_{2}-G_{1}\right)^{-1}\right]_{2} \checkmark$	1
		result for R_{Y} :	result for R_{Y} in range 200Ω to $240 \Omega_{3^{\checkmark}}$ (unit required for either R_{X} or R_{Y}; for POT error here and in (c)(i), eg R_{X} and R_{Y} results in range but both $\times 10^{-3}$ and not labelled in $\mathrm{k} \Omega$, only deduct 1 mark)	1
				16

Section A Task 2

1	(a)	explanation:	line up plumb line with loop B; move loop T until this is lined up with plumb line	1
1	(b)/(c)	tabulation:	$m \quad / \mathrm{g} \quad y \quad / m m$ full credit for valid alternative units for m and y	1
		results:	9 sets of m and y deduct 1 mark for each missing set, if m is not in the left-hand column of a table with data arranged in rows; deduct this mark if the data is not recorded in a single coherent table, if there is no evidence that mean y values have been obtained from repeated readings, eg loading and unloading (condone no repeat for $m=900 \mathrm{~g}$), additional mass recorded for m (ie values recorded for $m=0$ to $m=800 \mathrm{~g}$) maximum deduction 2 marks; there is no credit for false or invented data	2
		significant figures:	all y recorded to the nearest mm ; if m values recorded in kg these must be 3 sf	1
1	(d)	axes:	marked y / mm (vertical) and m / g (horizontal) deduct $1 / 2$ for each missing label or separator, rounding down; no mark if axes are reversed either or both marks may be lost if the interval between the numerical values is marked with a frequency of $>5 \mathrm{~cm}$	2
		scales:	points should cover at least half the grid horizontally and half the grid vertically (if necessary, a false origin should be used to meet these criteria; either or both marks may be lost for use of a difficult or non-linear scale)	2
		points:	all tabulated points plotted correctly (check at least three including one from each straight-line section and any anomalous points); 8 or 9 (tabulated and plotted) $[7 \checkmark \checkmark, 6 \checkmark]$ 1 mark is deducted for each tabulated point that has not been plotted for any plotted point for which the data has not been tabulated for every point $>1 \mathrm{~mm}$ from correct position if any point is poorly marked; no credit for false data	3
		line:	ruled best fit line of positive gradient from $m=100 \mathrm{~g}$ to $m=$ 300 g and a ruled section of lower positive gradient from $m=$ 500 g ; these lines must meet at an elbow, otherwise they must be joined by smooth curve with no inflection \checkmark maximum acceptable deviation from best fit line is 2 mm , adjust criteria if graph is poorly scaled; withhold mark if line is poorly marked	1
		quality:	8 points to $\pm 2 \mathrm{~mm}$ of a suitable line as described above; if a curve is drawn use a ruler to judge Q from the plotted points, adjusting for any mis-plots; adjust $\pm 2 \mathrm{~mm}$ criterion if the graph is poorly scaled	1
				14

Section B			
1	$\begin{gathered} \text { (a)(i) } \\ \text { and } \\ \text { (a)(ii) } \end{gathered}$	valid attempt at gradient calculation or ${ }_{12} \checkmark=0$ (if a curve is drawn in error a tangent or normal should be drawn to form the hypotenuse of the triangle) correct transfer of y-and x-step data between graph and both calculations ${ }_{1} \checkmark$ (mark is withheld if points used to determine either step $>1 \mathrm{~mm}$ from correct position on grid; if tabulated points are used these must lie on the line) at least one gradient calculation has y-step and x-step both at least 8 semimajor grid squares [5 by 13 or 13 by 5$]_{2} \checkmark$ (if a poorly-scaled graph is drawn the hypotenuse of the gradient triangle should be extended to meet the 8×8 criteria)	2
1	(a)(iii)	$\frac{G_{1}}{G_{2}}$, no unit, in range 2.37 to 2.63 or $2.5 \checkmark \checkmark$ [2.25 to 2.75 or $2.3,2.4,2.6$ or $2.7 \checkmark$] max 4sf answer: note that this is the only part of Section B where excessive sf are penalised	2
1	(b)(i)	sensible comment about the condition of the central spring at the point when G_{1} changes to G_{2}, eg (the thread becomes tight and) the central spring is placed under tension [is extended / is stretched] $1_{1} \checkmark$	MAX 2
		sensible comment about how the condition of the central spring affects the characteristics of the system at the point when G_{1} changes to G_{2}, eg when the central spring comes under tension the system is harder to stretch [stiffness of system is increased / the change in y per 100 g [rate of change of y] is decreased] 2^{\checkmark}	
		$\begin{aligned} & \text { gradient of graph } \propto \frac{1}{\text { stiffness }^{3}}{ }^{\checkmark} \\ & \text { (reject gradient }=\frac{1}{\text { stiffness }} \text {) } \end{aligned}$	
1	(b)(ii)	extrapolate [extend the line] and read off the y [vertical] intercept \checkmark (insist on 'extrapolate/extend' and ' y / vertical intercept or value where line meets y axis'; give full credit for a clear annotated diagram showing the line extrapolated to meet the axis and the intercept labelled or for algebraic approach based on intercept $=y-G_{1} x$ where y and x are coordinates on the line where the gradient $=G_{1}$)	1
1	(c)	candidate's graph will be linear [straight line/no change in gradient] of gradient G_{1} [same gradient as when $m \leq 300 \mathrm{~g}$]	1

$A Q A^{Z}$

2	(a)(i)	when S is closed the resistors R1 and R2 are in parallel ${ }_{1} \checkmark$ (I_{2} is greater than I_{1} because) when S is closed) circuit [total / combined] resistance is less [resistance of (combination of) R1 and R2 together is less than the resistance of R1 (by itself)] ${ }_{2} \checkmark$	
		idea that (battery) pd [voltage] is shared between the variable resistor and fixed resistor(s) R1 (and R2) [across voltmeter] ${ }_{3} \checkmark$	
2	(a)(ii)	$I \times R$ argument pd across variable resistor $=$ current \times resistance of variable resistor ${ }_{4} \checkmark$ (V_{1} is greater than V_{2} because) when current is greater, pd across variable r resistor is greater (so pd across parallel part [voltmeter reading] is less) $5_{5} \checkmark$ [potential divider argument allowed only when ${ }_{3} \checkmark$ has been earned (V_{2} is less than V_{1} because) the variable resistor has a greater share of the available pd when the introduction of R2 reduces the fixed resistance of the circuit ${ }_{45} \sqrt{ }$]	5 MAX 3
2	(b)(i)	mean correctly calculated as $68.9(0)(\Omega) \checkmark$ (reject 2 sf 69 but allow >4 sf; do not insist on seeing working)	1
	(b)(ii)	working to show uncertainty $=$ half range, result to same dp as mean; for mean $=68.90$, uncertainty $=2.95(\Omega)$ [for mean $=68.9$, uncertainty $=3.0] \checkmark$ (reject 1 sf 3 unless 69 given in (b)(i))	1
	(b)(iii)	statement (or correct working) to show the resistance at limits of the manufacturer's tolerance are 71.4Ω and/or 64.6) $\Omega_{1} \checkmark$ or ${ }_{12} \checkmark=0$ (from (b)(i) and (b)(ii)) statement (or correct working) to show the resistance (as high as) 71.9Ω [as low as 65.9Ω or sum / difference of answers to (b)(i) and (b)(ii)]; a logically consistent statement is also required about whether the resistor is outside the range (expect 'outside' but allow 'yes') ${ }_{2} \checkmark$	2

$A Q A^{Z}$

	(a)(i)	position of cross-wires recorded between 94.0 to 110.0 mm , to $0.1 \mathrm{~mm} \checkmark$	1
3	(a)(ii)	d in range 12.4 to 12.8 mm s in range 6.0 to 6.8 mm (reject 6 mm) the correct unit must appear with at least one of the answers in (a)(i) and (a)(ii), or withhold one mark here	2
3	(b)	number of washers found from $\frac{\pi(125+d)}{d}$ (if d is in mm) 34 [ecf for false d but must be rounded down to an integer] $\left[\frac{\pi(125+d / 2)}{d}\right.$ leading to 32 is worth 1 MAX]	2
3	(c)(i)	thickness of washer measured with a micrometer [screw gauge, digital vernier callipers: allow (analogue) vernier calliper if the precaution is measure thickness of several washers and find average] repeat reading in different places and divide by number / find average [measure multiple thicknesses and divide by number / find average or check for zero error before making measurements or close jaws of micrometer using the ratchet / do not over-tighten the micrometer \checkmark] (ignore reference to checking calibration)	2
		mass of the washer measured (ignored 'weighed with') with a balance (reject 'scales' (digital or otherwise)) measure (combined) mass of several washers and divide by number of washers / calculate average (mass) [measure mass of different washers and calculate average] (ecf for 'scales' but no ecf for 'weight') [check for zero error before making measurement / ensure that balance has been tared [zeroed] or ensure that balance is on a horizontal surface \checkmark] (ignore reference to checking calibration)	2
3	(c)(ii)	description of correct algebraic method to determine how the volume of the washer is obtained, eg $\frac{\pi}{4} \times\left(d^{2}-s^{2}\right) \times$ thickness; if numerical values are suggested for d and s allow ecf from part (a) (reject bland 'cross-sectional area \times thickness' or $\frac{\pi}{4} \times(d-s)^{2} \times$ thickness); $\text { density }=\frac{\text { mass }}{\text { volume }} \checkmark$	1
			25

