

MS4 £4.00 **PMT**

GCE MARKING SCHEME

CHEMISTRY (NEW) AS/Advanced

SUMMER 2009

CH1

Section A

- 1. (a) (i) Atomic number is the number of protons in the nucleus / in an element (e.g. 19 for potassium) [1]
 - (ii) Isotopes of elements have the same number of protons but different number of neutrons (e.g. chlorine has two isotopes ³⁵Cl and ³⁷Cl) / same atomic number but different mass number [1]

(b)

- 2. (a) (i) Measure (the volume of) hydrogen produced (using a gas syringe) / (mass of) hydrogen lost at constant time intervals [1]
 - (ii) Crush it into a powder / increase its surface area / heat it / stir it [1]

$$(b) 2 g [1]$$

3.
$$3 g/A$$
 [1]

fraction of molecules with energy, E

Higher temperature - peak of curve must be lower and to right

energy E

(b)
$$\Delta H = (4 \times 412) + 612 + 436 - ((6 \times 412) + 348)$$
 [1]
= -124 kJ mol⁻¹ [1]

Total [10]

5. (a) (i) Correct plotting of 6 points (Allow
$$\pm \frac{1}{2}$$
 square) [3]

(Accept any two points) [2]

(iv) N only has unpaired 2p electrons, O has two unpaired and two paired 2p electrons / N 1s² 2s² 2p³, O 1s² 2s² 2p⁴ (1), repulsion between the paired electrons makes it easier to remove one of the electrons / takes more energy to remove unpaired electron (1) [2]

(b) (i) Pb C O
$$\frac{77.5}{207} = \frac{4.50}{12} = \frac{18.0}{16}$$

$$0.374 = 0.375 = 1.125 (1)$$

$$1 = 1 = 3$$
Formula = PbCO₃ (1) [2]

(ii) I
$$M_r Pb_3O_4 = (3 \times 207) + (4 \times 16) = 685$$
 [1]

II Moles PbO =
$$\frac{134}{223}$$
 = 0.601 (1)

Moles
$$Pb_3O_4 = 0.200$$
 (1)

Mass
$$Pb_3O_4 = 137 g$$
 (1)

or alternative

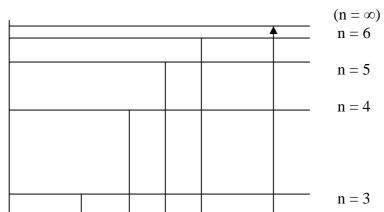
1338 g PbO gives 1370 g Pb
$$_3$$
O $_4$ (1)

1 g PbO gives
$$\frac{1370}{1388}$$
 g Pb₃O₄ (1)

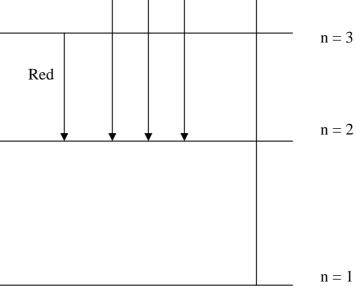
134 g PbO gives
$$137(.2)$$
 g Pb₃O₄ (1)

Total [14]

6.	(a)	(i)	It prov	ides a new route	(1)	
			of low	er activation energy	(1)	[2]
		(ii)	Heterogenous			[1]
		(iii)	I	Lower temperatures could be (which would mean) increase less energy consumption (1) equilibrium could be reached (Accept any two points)	ed yield (1) / / lower pressure used (1	l)/ [2]
			II	More ammonia formed / equ since more (gas) molecules of	on l.h.s. (1)	
				(Increases rate of reaction 1 i	mark)	[2]
			III	Equilibrium moves to right / since removing ammonia dec the mixture (1)	creases its concentration	
				(Stops ammonia from returning hydrogen 1 mark)	ing to nitrogen and	[2]
		(iv)		port / on the coast for exporti ransport links for product (1),	- -	
			(Two v	valid reasons without one qual	lification 1 mark only)	[2]
	(b)	(i)	2NH ₃	+ H ₂ SO ₄	s) ₂ SO ₄	[1]
		(ii)		mmonia accepts a proton (from the acid) / ammonia has a ne pair of electrons / ammonia neutralises the acid		
			ione pa	in or elections / ammonia net	manses the actu	[1]


(iii) % N = $28/132 \times 100$ (1) = 21.2% (1) [2]

Total [15]


7. (a) (i) Only changes between energy levels allowed / electron falls from higher energy levels to lower energy levels

Energy emitted related to frequency / E = hf / the difference between any two energy levels are fixed / energy levels are quantised (1) [2]

(ii)

Energy

Labelling of any 3 horizontal lines (1)

Transitions going to n = 2 (1)

Red line from n = 3 to n = 2 (1)

(If all lines go to n = 1, accept red line from n = 2 to n = 1) [3]

(iii) Transition from n = 1 to $n = \infty$ [1]

(b) (i)
$$A_r H = \underbrace{(1 \times 99.2) + (2 \times 0.8)}_{100}$$
 (1)
$$= 1.008$$
 (1) [2] (ii) Some of the hydrogen molecules are split into atoms [1] (c) (i) Electron gun / source of electrons / heated filament [1] (ii) Electric field / charged plates / accelerator / collimator [1] (iii) To ensure a vacuum /

prevents collisions between sample and air molecules

(*d*)

Туре	Nature	Effect on atomic number
α particle	Cluster of 2 protons and 2 neutrons (1) / ⁴ ₂ He <u>nucleus</u>	Decrease by 2 (1)
β particle	Electron (1)	Increase by 1 (1)
γ radiation	Electromagnetic radiation of high energy	No effect

(Accept 'decrease' and 'increase' in 'atomic number' for 1 mark only)
[4]

Total [16]

[1]

PMT

Gas is a non renewable energy source / will run out (1) [2]

(QWC) The information is organised clearly and coherently, using specialist vocabulary where appropriate [1]

(ii) Wind / hydro / biomass / solar / geothermal (1)

Rotation of blades turns turbine / falling water turns turbine / combustion steam turns turbine / sunlight on photovoltaic cell produces electricity (1)

(Accept answers in terms of energy changes) [2]

(b) (i)
$$C_2H_5OH + 3O_2 \longrightarrow 2CO_2 + 3H_2O$$
 [1]

(ii)
$$\Delta H = (2 \times -394) + (3 \times -286) - (-278)$$
 (1)

$$\Delta H = -1368 \text{ kJ mol}^{-1}$$
 (1) [2]

(iii) Energy for ethanol =
$$\frac{1368}{46}$$
 = 29.7 kJ g⁻¹ (1)

Energy for octane
$$= \frac{5512}{114}$$
 = 48.4 kJ g⁻¹ (1) [2]

(iv) Ethanol is a renewable fuel (if obtained by fermentation) / ethanol is cheaper in countries with plentiful sugar cane growth / ethanol is more carbon neutral / ethanol burns more cleanly [1]

Total [11]

(b) 23.10 23.95 23.20 23.15 [1]

(c) Anomalous result = 23.95 cm^3 Mean = 23.15 cm^3 [1]

(d) (i) Moles HCl = $\frac{0.1 \times 23.15}{1000} = 2.315 \times 10^{-3}$ [1]

(ii) Moles $Na_2CO_3 = 1.158 \times 10^{-3}$ [1]

(iii) Moles in original solution = 1.158×10^{-2} [1]

(iv) Mass $Na_2CO_3 = 1.227 g$ [1]

(v) % Na₂CO₃ = 59.9 % [1] (Consequential marking applies)

(e) e.g. funnel left in burette (1) / air in pipette (1) /
not reading meniscus (1) / solution in flask not mixed thoroughly (1) /all of solid not used to make solution (1)

(Maximum 2 marks for sources of error)

If end-point overshot, too much acid would have been added (1), so moles (mass) carbonate calculated would have been more than actual moles (mass) present (1)

[4]

(QWC)Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning (1)

Selection of a form and style of writing appropriate to purpose and to complexity of subject matter (1) [2]

Total [14]

Section B Total [70]