Version 1.0: 0607



## **General Certificate of Education**

## **Mathematics 6360**

MPC4 Pure Core 4

# **Mark Scheme**

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

#### **COPYRIGHT**

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

#### **Key to mark scheme and abbreviations used in marking**

| M          | mark is for method                                                 |     |                            |  |  |  |  |
|------------|--------------------------------------------------------------------|-----|----------------------------|--|--|--|--|
| m or dM    | mark is dependent on one or more M marks and is for method         |     |                            |  |  |  |  |
| A          | mark is dependent on M or m marks and is for accuracy              |     |                            |  |  |  |  |
| В          | mark is independent of M or m marks and is for method and accuracy |     |                            |  |  |  |  |
| Е          | mark is for explanation                                            |     |                            |  |  |  |  |
|            |                                                                    |     |                            |  |  |  |  |
| or ft or F | follow through from previous                                       |     |                            |  |  |  |  |
|            | incorrect result                                                   | MC  | mis-copy                   |  |  |  |  |
| CAO        | correct answer only                                                | MR  | mis-read                   |  |  |  |  |
| CSO        | correct solution only                                              | RA  | required accuracy          |  |  |  |  |
| AWFW       | anything which falls within                                        | FW  | further work               |  |  |  |  |
| AWRT       | anything which rounds to                                           | ISW | ignore subsequent work     |  |  |  |  |
| ACF        | any correct form                                                   | FIW | from incorrect work        |  |  |  |  |
| AG         | answer given                                                       | BOD | given benefit of doubt     |  |  |  |  |
| SC         | special case                                                       | WR  | work replaced by candidate |  |  |  |  |
| OE         | or equivalent                                                      | FB  | formulae book              |  |  |  |  |
| A2,1       | 2 or 1 (or 0) accuracy marks                                       | NOS | not on scheme              |  |  |  |  |
| –x EE      | deduct x marks for each error                                      | G   | graph                      |  |  |  |  |
| NMS        | no method shown                                                    | c   | candidate                  |  |  |  |  |
| PI         | possibly implied                                                   | sf  | significant figure(s)      |  |  |  |  |
| SCA        | substantially correct approach                                     | dp  | decimal place(s)           |  |  |  |  |
|            |                                                                    |     |                            |  |  |  |  |

#### **No Method Shown**

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

June 07

### MPC4

| Q        | Solution                                                                    | Marks | Total | Comments                                                 |
|----------|-----------------------------------------------------------------------------|-------|-------|----------------------------------------------------------|
| 1(a)     | $2\left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right) - 3 = -3$         | M1A1  | 2     | use of $\pm \frac{1}{2}$                                 |
|          |                                                                             |       |       | SC NMS -3 1/2                                            |
|          | Alt                                                                         |       |       | No ISW, so subsequent answer "3" AO                      |
|          | algebraic division:                                                         |       |       |                                                          |
|          | $ \begin{array}{r} x\\2x+1)2x^2+x-3\\ \underline{2x^2+x}\\ -3 \end{array} $ | (M1)  |       | complete division with integer remainder                 |
|          | $2x^2 + x$                                                                  |       |       |                                                          |
|          |                                                                             | (A1)  | (2)   | remainder = $-3$ stated, or $-3$ highlighted             |
|          | $\frac{x(2x+1)-3}{2x+1}$                                                    | (M1)  |       | attempt to rearrange numerator with $(2x+1)$ as a factor |
|          | <del></del>                                                                 | (A1)  | (2)   | remainder = $-3$ stated, or $-3$ highlighted             |
|          |                                                                             |       |       |                                                          |
| (b)      | $\frac{(2x+3)(x-1)}{(x+1)(x-1)}$                                            | B1    |       | numerator denominator not necessarily in fraction        |
|          | (x+1)(x-1)                                                                  | B1    |       | denominator)                                             |
|          | $=\frac{2x+3}{x+1}$                                                         | B1    | 3     | CAO in this form. Not $\frac{2x+3}{x+1} \frac{x-1}{x-1}$ |
| (b)      | Alternative                                                                 |       |       |                                                          |
|          | $\frac{2x^2 - 2 + x - 1}{x^2 - 1}$                                          |       |       |                                                          |
|          | $=2+\frac{x-1}{x^2-1}$                                                      | (M1)  |       |                                                          |
|          | $=2+\frac{x-1}{(x-1)(x+1)}$                                                 | (B1)  |       |                                                          |
|          | $=2+\frac{1}{x+1}$                                                          | (A1)  | (3)   |                                                          |
|          | Total                                                                       |       | 5     |                                                          |
| <u> </u> | 10141                                                                       |       |       |                                                          |

| Q       | Solution                                                                             | Marks | Total | Comments                                                                       |
|---------|--------------------------------------------------------------------------------------|-------|-------|--------------------------------------------------------------------------------|
| 2(a)(i) | $(1+x)^{-1} = 1 + (-1)x + px^2 + qx^3$                                               | M1    |       | $p \neq 0, \ q \neq 0$                                                         |
|         | $=1-x+x^2-x^3$                                                                       | A1    | 2     | SC $1/2$ for $= 1 - x + px^2$                                                  |
| (ii)    | $(1+3x)^{-1} = 1 - 3x + (3x)^2 - (3x)^3$                                             | M1    |       | x replaced by 3x in candidate's (a)(i);condone missing brackets                |
|         | $=1-3x+9x^2-27x^3$ Alt (starting again)                                              | A1    | 2     | CAO SC $x^3$ -term : $1 - 3x + \frac{3}{9}x^2$ 1/2                             |
|         | $(1+3x)^{-1} = 1 - (3x) + \frac{(-1)(-2)(3x)^2}{2!} + \frac{(-1)(-2)(-3)(3x)^3}{3!}$ | (M1)  |       | condone missing brackets accept 2 for 2!, 3.2 for 3!                           |
|         | $=1-3x+9x^2-27x^3$                                                                   | (A1)  | (2)   | CAO                                                                            |
| (b)     | $\frac{1+4x}{(1+x)(1+3x)} = \frac{A}{1+x} + \frac{B}{1+3x}$                          | M1    |       | correct partial fractions form, and multiplication by denominator              |
|         | $1 + 4x = A(1+3x) + B(1+x)$ $x = -1, \ x = -\frac{1}{3}$                             | m1    |       | Use (any) two values of $x$ to find $A$ and $B$                                |
|         | $A = \frac{3}{2}$ , $B = -\frac{1}{2}$                                               | A1    | 3     | A and B both correct                                                           |
|         | Alt: $\frac{1+4x}{(1+x)(1+3x)} = \frac{A}{1+x} + \frac{B}{1+3x}$                     | (M1)  |       | correct partial fractions form, and multiplication by denominator              |
|         | 1 + 4x = A(1+3x) + B(1+x)<br>A + B = 1, 3A + B = 4                                   | (m1)  |       | Set up and solve                                                               |
|         | $A = \frac{3}{2}, B = -\frac{1}{2}$                                                  | (A1)  | (3)   | A and B both correct                                                           |
|         |                                                                                      | (A1)  | (3)   | A and D both contect                                                           |
| (c)(i)  | $\frac{1+4x}{(1+x)(1+3x)} = \frac{3}{2(1+x)} - \frac{1}{2(1+3x)}$                    | M1    |       |                                                                                |
|         | $= \frac{3}{2} (1 - x + x^2 - x^3) - \frac{1}{2} (1 - 3x + 9x^2 - 27x^3)$            | m1    |       | multiply candidate's expansions by $A$ and                                     |
|         | 2 < 7                                                                                | A1    | 3     | B, and expand and simplify CAO                                                 |
|         | ··· · · - <del></del> ·                                                              |       | -     | SC A and B interchanged, treat as                                              |
|         | Alt:                                                                                 |       |       | miscopy. $(1-4x+13x^2-40x^3)$                                                  |
|         | $= \frac{1+4x}{(1+x)(1+3x)} = (1+4x)(1+x)^{-1}(1+3x)^{-1}$                           |       |       |                                                                                |
|         | $= (1+4x)(1-x+x^2-x^3)(1-3x+9x^2-27x^3)$                                             | (M1)  |       | write as product, using expansions condone missing brackets on $(1 + 4x)$ only |
|         | $= 1 - 4x + 13x^2 - 40x^3 + 4x - 16x^2 + 52x^3$                                      | (m1)  |       | attempt to multiply the three expansions up to terms in $x^3$                  |
|         | $=1-3x^2+12x^3$                                                                      | (A1)  | (3)   | CAO                                                                            |
| (ii)    | x  < 1 and $ 3x  < 1$                                                                | M1    |       | OE and nothing else incorrect                                                  |
|         | $\left  x \right  < \frac{1}{3} \tag{0.33}$                                          | A1    | 2     | OE Condone ≤                                                                   |
|         | Total                                                                                |       | 12    |                                                                                |

| Q    | Solution                                                             | Marks | Total | Comments                                                             |
|------|----------------------------------------------------------------------|-------|-------|----------------------------------------------------------------------|
| 3(a) | R = 5                                                                | B1    |       |                                                                      |
|      | $\tan \alpha = \frac{3}{4}$ (OE) $\alpha = 36.9^{\circ}$ (ISW 216.9) | M1A1  | 3     | SC1 $\tan \alpha = \frac{4}{3}, \alpha = 53.1^{\circ}$               |
|      |                                                                      |       |       | $R, \alpha \text{ PI in (b)}$                                        |
| (b)  | $\cos(x - \alpha) = \frac{2}{R}$ $x - \alpha = 66.4^{\circ}$         | M1    |       |                                                                      |
|      | $x - \alpha = 66.4^{\circ}$                                          | A1    |       |                                                                      |
|      | $x = 103.3^{\circ}$                                                  | A1F   |       |                                                                      |
|      | $x = 330.4^{\circ}$                                                  | A1F   | 4     | accept 330.5°, –1 each extra                                         |
|      |                                                                      |       |       | ft on acute $\alpha$                                                 |
| (c)  | minimum value $=-5$                                                  | B1F   |       | ft on R                                                              |
|      | $\cos(x-36.9) = -1$                                                  | M1    |       | SC $\cos(x+36.9)$ treat as miscopy                                   |
|      | $x = 216.9^{\circ}$                                                  | A1    | 3     | 216.9 or better accept graphics calculator solution to this accuracy |
|      |                                                                      |       |       | SC Find max:                                                         |
|      |                                                                      |       |       | $\max = 5 \text{ at } (x + 36.9) \text{ stated } 1/3$                |
|      |                                                                      |       |       | Max 8/10 for work in radians                                         |
|      | Total                                                                |       | 10    |                                                                      |

| MPC4 (cont) O | Solution                                                                                                                 | Marks      | Total | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------|--------------------------------------------------------------------------------------------------------------------------|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4(a)(i)       | t = 0: x = 3                                                                                                             | B1         | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                                                                                                                          |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (ii)          | $t = 14$ : $x = 15 - 12e^{-1}$                                                                                           | M1         |       | or $15 - 12e^{\frac{-14}{14}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | = 10.6                                                                                                                   | A1         | 2     | CAO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (b)(i)        | $-5 = -12e^{-\frac{t}{14}}$                                                                                              | M1         |       | substitute $x = 10$ ; rearrange to form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | $= 10.6$ $-5 = -12e^{-\frac{t}{14}}$                                                                                     |            |       | $p = qe^{-\frac{t}{14}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | $ \ln\left(\frac{5}{12}\right) = -\frac{t}{14}  (OE) $                                                                   | m1         |       | take lns correctly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | (12) 14                                                                                                                  |            |       | , and the second |
|               | $t = 14\ln\left(\frac{12}{5}\right)$                                                                                     | A1         | 3     | must come from correct working                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (ii)          | $t = 12.256 \approx 12 \text{ days}$                                                                                     | B1F        | 1     | ft on $a$ , $b$ if $a > b$ ; accept $t = 12$ NMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                                                                                                                          |            |       | Accept 12 from incorrect working in b(i)<br>Accept 13 if 12.2 or 12.3 seen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (c)(i)        | $\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{1}{14} \times -12\mathrm{e}^{-\frac{t}{14}}$                                   | M1         |       | differentiate; allow sign error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | d <i>t</i> 14                                                                                                            |            |       | condone $\frac{dy}{dx}$ used consistently                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | 1                                                                                                                        |            |       | u.r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | $=-\frac{1}{14}(x-15)$                                                                                                   | m1         |       | Or $\frac{1}{14} \left( 12e^{-\frac{t}{14}} \right)$ and $12e^{-\frac{t}{14}} = 15 - x$ seen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               | $=\frac{1}{14}(15-x)$                                                                                                    | <b>A</b> 1 | 3     | AG – be convinced CSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | $\mathbf{Alt:}  t = -14 \ln \left( \frac{15 - x}{12} \right)$                                                            | (M1)       |       | attempt to solve given equation for t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | $\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{-14\left(-\frac{1}{12}\right)}{\left(\frac{15-x}{12}\right)}$                   | (m1)       |       | differentiate wrt x, with $\frac{1}{\frac{15-x}{12}}$ seen; OE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | $\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{14}{15 - x} \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{14}(15 - x)$ | (A1)       | (3)   | AG – be convinced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | Alt: (backwards)                                                                                                         |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | $\int \frac{dx}{15 - x} = \int \frac{dt}{14} = \pm 14 \ln (15 - x) = t + c$                                              | (M1)       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | Use $(0,3):-14\ln(15-x)+14\ln 12 = t$                                                                                    | (m1)       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | Solve for $x: x = 15 - 12e^{-\frac{t}{14}}$                                                                              | (A1)       | (3)   | All steps shown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (ii)          | rate of growth = $0.5$ (cm per day)                                                                                      | В1         | 1     | Accept $\frac{7}{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | Total                                                                                                                    |            | 11    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Q    | Solution                                                                                    | Marks | Total | Comments                                                                |
|------|---------------------------------------------------------------------------------------------|-------|-------|-------------------------------------------------------------------------|
| 5(a) | $x = 1, \ 5a^2 - a - 4 = 0$                                                                 | M1    |       | condone y for a                                                         |
|      | (5a+4)(a-1)=0, a=1                                                                          | A1    | 2     | AG – be convinced, both factors seen                                    |
|      |                                                                                             |       |       | or $a = -\frac{4}{5}$ or $1 \Rightarrow a = 1$                          |
|      |                                                                                             |       |       | A0 for 2 positive roots                                                 |
|      |                                                                                             |       |       | (substitute $(1, 1) \Rightarrow 5 = 5$ no marks)                        |
| (b)  | dv                                                                                          |       |       |                                                                         |
|      | $\frac{\mathrm{d}y}{\mathrm{d}x} + 4$                                                       | B1B1  |       | (Ignore ' $\frac{dy}{dx}$ =' if not used, otherwise                     |
|      |                                                                                             |       |       | loses final A1)                                                         |
|      | $=10xy^2 + 10x^2y\frac{\mathrm{d}y}{\mathrm{d}x}$                                           | M1    |       | attempt product rule, see two terms added                               |
|      | dx                                                                                          | M1    |       | chain rule, $\frac{dy}{dx}$ attached to one term only                   |
|      |                                                                                             | A1    |       | $\begin{array}{c} dx \\ condone 5 \times 2 \text{ for } 10 \end{array}$ |
|      | dv dv                                                                                       |       |       | ,                                                                       |
|      | $x = 1, y = 1$ $\frac{dy}{dx} + 4 = 10 + 10 \frac{dy}{dx}$                                  | M1    |       | two terms, or more, in $\frac{dy}{dx}$                                  |
|      | dy = 6  (2)                                                                                 | . 1   | 7     | 000                                                                     |
|      | $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{6}{9} = \left(-\frac{2}{3}\right)$                | A1    | 7     | CSO                                                                     |
|      | Alt (for last two marks)                                                                    |       |       |                                                                         |
|      | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{10xy^2 - 4}{1 - 10x^2y}$                           | (M1)  |       | $\int_{C} dy$                                                           |
|      | $\frac{dx}{dx} - \frac{1}{1 - 10x^2y}$                                                      | (M1)  |       | find $\frac{dy}{dx}$ in terms of x, y and substitute                    |
|      |                                                                                             |       |       | x = 1, $y = 1$ must be from expression with                             |
|      |                                                                                             |       |       | two terms or more in $\frac{dy}{dx}$                                    |
|      | 10. 4                                                                                       |       |       | dx                                                                      |
|      | $(1,1) \Rightarrow \frac{10-4}{1-10} = -\frac{6}{9}$ $\frac{y-1}{x-1} = -\frac{2}{3}  (OE)$ | (A1)  |       |                                                                         |
|      | y-1 = 2 (OF)                                                                                | DIE   | 1     |                                                                         |
| (c)  | $\frac{1}{x-1} = -\frac{1}{3}$ (OE)                                                         | B1F   | 1     | ft on gradient ISW after any correct form                               |
|      | Total                                                                                       |       | 10    | 15 W arter any correct form                                             |

| Q       | Solution                                                                                                                                                         | Marks          | Total | Comments                                                                                 |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|------------------------------------------------------------------------------------------|
| 6(a)(i) | $\frac{\mathrm{d}x}{\mathrm{d}\theta} = -\sin\theta \qquad \frac{\mathrm{d}y}{\mathrm{d}\theta} = 2\cos 2\theta$                                                 | B1 B1          | 2     |                                                                                          |
| (ii)    | $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2\cos 2\theta}{\sin \theta}, \ \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2\cos \frac{\pi}{3}}{\sin \frac{\pi}{6}} = -2$ | M1             |       | use chain rule their $\frac{dy}{d\theta}$ their $\frac{dx}{d\theta}$ and                 |
|         |                                                                                                                                                                  | A 1            | 2     | substitute $\theta = \frac{\pi}{6}$                                                      |
| (b)     | $y = 2\sin\theta\cos\theta = 2\sqrt{1-\cos^2\theta}\cos\theta$                                                                                                   | A1<br>B1<br>B1 | 2     | use $\sin 2\theta = 2\sin \theta \cos \theta$<br>use $\sin^2 \theta = 1 - \cos^2 \theta$ |
|         | $y = 2\sqrt{1 - x^2} x$                                                                                                                                          | M1             |       | $\sin \theta$ , $\cos \theta$ in terms of x                                              |
|         | $y = 2\sqrt{1 - x^2} x$<br>$y^2 = 4x^2 (1 - x^2)$                                                                                                                | A1             | 4     | all correct CSO                                                                          |
|         | Alt                                                                                                                                                              |                |       |                                                                                          |
|         | $y^2 = \sin^2 2\theta = (2\sin\theta\cos\theta)^2$                                                                                                               | (B1)           |       | use of double angle formula                                                              |
|         | $= (4)\sin^2\theta\cos^2\theta = (4)(1-\cos^2\theta)\cos^2\theta$                                                                                                | (B1)           |       | use of $s^2 + c^2 = 1$ to eliminate $\sin \theta$                                        |
|         | $= (4)(1-x^2)x^2$<br>= 4(1-x^2)x^2                                                                                                                               | (M1)           |       | Substitute $\cos \theta$ for $x$                                                         |
|         | $=4(1-x^2)x^2$                                                                                                                                                   | (A1)           | (4)   | CSO                                                                                      |
|         | Total                                                                                                                                                            |                | 8     |                                                                                          |

| Q Q  | Solution                                                                                                         | Marks | Total   | Comments                                                                                                                 |
|------|------------------------------------------------------------------------------------------------------------------|-------|---------|--------------------------------------------------------------------------------------------------------------------------|
| 7(a) | 「 2                                                                                                              |       |         |                                                                                                                          |
|      | $\begin{vmatrix} 3 \\ -3 \\ -1 \end{vmatrix} \bullet \begin{vmatrix} 1 \\ 2 \\ -3 \end{vmatrix} = 3 - 6 + 3 = 0$ | M1    |         | attempt at sp, 3 terms, added                                                                                            |
|      | $= 0 \Rightarrow$ perpendicular                                                                                  | A1    | 2       | $=0 \Rightarrow$ perpendicular seen                                                                                      |
|      |                                                                                                                  |       |         | $\left(\text{or }\cos\theta = 0 \Longrightarrow \theta = 90^{\circ}\right)$                                              |
|      |                                                                                                                  |       |         | Allow $\begin{bmatrix} 3 \\ -6 \\ \frac{3}{0} \end{bmatrix}$ but not $\begin{bmatrix} 3 \\ -6 \\ 3 \end{bmatrix} = 0$    |
| (b)  | $8+3\lambda=-4+\mu$                                                                                              | M1    |         | set up any two equations                                                                                                 |
|      | $6-3\lambda = 2\mu$ $-9-\lambda = 11-3\mu$ $\lambda = -2, \mu = 6$                                               |       |         |                                                                                                                          |
|      | $\lambda = -2,  \mu = 6$                                                                                         | m1 A1 |         | solve for $\lambda$ and $\mu$                                                                                            |
|      | verify third equation                                                                                            | m1    |         | substitute $\lambda, \mu$ in third equation                                                                              |
|      | intersect at $(2, 12, -7)$                                                                                       | A1    | 5       | CAO                                                                                                                      |
|      | Alt (for last two marks) substitute $\lambda$ into $l_1$ and $\mu$ into $l_2$                                    | (m1)  |         |                                                                                                                          |
|      | · · · · · · · · · · · · · · · · · · ·                                                                            | (m1)  |         |                                                                                                                          |
|      | intersect at $(2,12,-7)$ , condone $\begin{pmatrix} 2\\12\\-7 \end{pmatrix}$                                     | (A1)  |         | (2,12,-7) found from both lines                                                                                          |
|      | $\left(-7\right)$                                                                                                |       |         | Note: working for (b) done in (a): award marks in (b)                                                                    |
| 7(c) | $\overrightarrow{AP} = \begin{pmatrix} 6\\12\\-18 \end{pmatrix}$ $AP^2 = 504$ $AB^2 = 2AP^2$                     | M1    |         | $\overrightarrow{AP} = \pm \left\{ \text{their } \overrightarrow{OP} - \begin{pmatrix} -4\\0\\11 \end{pmatrix} \right\}$ |
|      | $AP^2 = 504$                                                                                                     | A1F   |         | ft on P                                                                                                                  |
|      | $AB^2 = 2AP^2$                                                                                                   | M1    |         | Calculate $AB^2$                                                                                                         |
|      | $AB = 12\sqrt{7}$                                                                                                | A1    | 4<br>11 | OE accept 31.7 or better                                                                                                 |
|      | Total                                                                                                            |       | 11      |                                                                                                                          |

| Q    | Solution                                                                                                 | Marks      | Total | Comments                                                                      |
|------|----------------------------------------------------------------------------------------------------------|------------|-------|-------------------------------------------------------------------------------|
| 8(a) | $\int \frac{1}{\sqrt{1+2y}}  \mathrm{d}y = \int \frac{1}{x^2}  \mathrm{d}x$                              | M1         |       | attempt to separate and integrate                                             |
|      | $\int \frac{1}{\sqrt{1+2y}}  dy = \int \frac{1}{x^2} dx$ $\int \frac{1}{\sqrt{1+2y}}  dy = k\sqrt{1+2y}$ | m1         |       |                                                                               |
|      | 1, ,                                                                                                     | A1         |       | OE A1 for $\sqrt{1+2y}$ depends on both Ms                                    |
|      | $\sqrt{1+2y} = -\frac{1}{x}(+c)$ $x = 1, y = 4 \Rightarrow c = 4$                                        | <b>A</b> 1 |       | A1 for $-\frac{1}{x}$ depends on first M1 only                                |
|      | $x = 1, y = 4 \Rightarrow c = 4$                                                                         | m1         |       | +c must be seen on previous line                                              |
|      |                                                                                                          | A1F        | 6     | ft on $k$ and $\pm \frac{1}{x}$ only                                          |
| (b)  | $1 + 2y = \left(4 - \frac{1}{x}\right)^2$ $2y = 15 + \frac{1}{x^2} - \frac{8}{x}$                        | m1         |       | need $k\sqrt{1+2y} = x$ expression with $+c$ and attempt to square both sides |
|      | $2y = 15 + \frac{1}{x^2} - \frac{8}{x}$                                                                  | A1         | 2     | terms on RHS in any order<br>AG – be convinced CSO                            |
|      | Total                                                                                                    |            | 8     |                                                                               |
|      | TOTAL                                                                                                    |            | 75    |                                                                               |