

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2010

CH₅

SECTION A

- **1.** (a) (i) $\Delta H^{\theta} = -393.5 601.7 + 1095.8 = +100.6 \text{ kJ mol}^{-1}$ 1 mark [1]
 - (ii) The entropy increases because a gas is formed by the reaction and gases have higher entropies than solids. 1 mark [1]
 - (iii) $\Delta S^{\circ} = 0.1748 \text{ kJ mol}^{-1} \text{K}^{-1}$ 1 mark [1]
 - (iv) $\Delta G = \Delta H^{\circ} T\Delta S^{\circ}$ 1 mark $\Delta G = 0$ 1 mark T = 100.6 / 0.1748 = 576 K 1 mark [3] (mark consequentially if ΔH° or ΔS° incorrect) (3 marks for correct answer with no / incomplete working shown)
 - (b) Sodium carbonate soluble as ΔG negative (spontaneous reaction), 1 mark magnesium carbonate sparingly soluble / insoluble as ΔG positive. 1 mark [2] or Sodium carbonate more soluble than magnesium carbonate, ΔG for sodium carbonate more negative than ΔG for magnesium carbonate.
 - (c) (i) $[Mg^{2+}(aq)] = [CO_3^{2-}(aq)] = 3.16 \times 10^{-3} \text{ mol dm}^{-3}$ 1 mark [1]
 - (ii) $K_c = [3.16 \times 10^{-3}]^2 = 1.0 \times 10^{-5} \text{ mol}^2 \text{ dm}^{-6}$ 1 mark [1]
 - (iii) Yes, they are consistent, because as ΔG was positive (and the reaction would not occur spontaneously), K_c must have a very small value. 1 mark [1]
 - (iv) Adding extra carbonate ions would push the equilibrium to the left, decreasing the solubility. 1 mark [1]

Total [12]

- **2.** (a) (i) $K_{\rm w} = [{\rm H}^+] [{\rm OH}^-]$ 1 mark [1]
 - (ii) Equilibrium constant increases with temperature, so must be an endothermic process. 1 mark [1]
 - (iii) $K_{\rm w} = 4.3 \times 10^{-14} \, (\text{mol}^2 \, \text{dm}^{-6})$ 1 mark [1]
 - (iv) $[H^+] = \sqrt{4.3} \times 10^{-14} = 2.07 \times 10^{-7} \text{ mol dm}^{-3}$ 1 mark (allow 2.1 but not 2)

pH = $-\log (2.07 \times 10^{-7}) = 6.7$ 1 mark [2] (Mark consequentially if K_w or [H⁺] are incorrect)

- (b) (i) End point = $20.0 \text{ cm}^3 (allow 20 \text{ cm}^3)$ 1 mark [NH₃] × 25.0 = 0.100×20.0 1 mark for setting up equation [NH₃] = $0.080 \text{ mol dm}^{-3}$ 1 mark (must be two significant figures) [3]
 - (ii) $NH_4^+ \rightleftharpoons NH_3 + H^+$ / conjugate acid and base mixture 1 mark NH_3 reacts with added acid to form NH_4^+ 1 mark NH_4^+ dissociates as H^+ reacts with added alkali 1 mark [3]
 - (iii) Methyl red 1 mark
 (any additional indicators treated as right / wrong)
 pH range lies on the steep part of the curve 1 mark [2]

Total [13]

3. Any 2×1 mark for (a) A salt bridge: completes the circuit between the electrode solutions allows movement of ions without any mixing of the solutions [2] (b) (i) Used as a standard / defined as zero (in standard hydrogen electrode). 1 mark [1] (ii) EMF = 1.23 - 0 = 1.23V1 mark [1] (iii) Not operated under standard conditions / Process not 100% efficient / Energy lost as heat 1 mark [1] (iv) $2H_2 + O_2 \rightarrow 2H_2O$ or $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ 1 mark [1] Dependent on the equation used $\Delta H^{\circ} = -571.6 \text{ or } -285.8 \text{ kJ mol}^{-1}$ 1 mark [1] It is difficult to store enough hydrogen onboard (c) (i) 1 mark [1] Risk of hydrogen exploding in air 1 mark [1] (ii) (iii) Products are not polluting / No CO₂ greenhouse gas produced/H₂ available from renewable sources 1 mark [1] (d) (i) Mass = $(30/100) \times 1000 = 300 g$ 1 mark

d) (1) Mass = $(30/100) \times 1000 = 300 \text{ g}$ 1 mark No moles NaBH₄ = 300 / 37.84 = 7.93 moles 1 mark [2] (ii) Energy = $7.93 \times 300 = 2379 \text{ kJ}$ 1 mark [1]

(Mark consequentially on the no moles in (i))

(iii) $7.93 \times 4 = 31.72 \text{ mol H}_2 \text{ gas}$ 1 mark Volume = $31.72 \times 24 = 761.2 \text{ dm}^3$ 1 mark [2] (Mark consequentially on the no moles in (i))

Total [15]

SECTION B

4.	(a)	(i)	Rate = $0.0020 / 17.5 = 1.14 \times 10^{-4} \text{ mol dm}^{-3} \text{ min}^{-1}$ (or $1.90 \times 10^{-6} \text{ mol dm}^{-3} \text{ s}^{-1}$) Value 1 mark, units	1 mark	[2]
		(ii)	Follow the decrease in brown colour due to the Br_2 / use a colorimeter Reference to the measurement of time	1 mark 1 mark	[2]
		(iii)	Br ₂ (aq) zero order CH ₃ COCH ₃ (aq) first order	1 mark 1 mark	[2]
		(iv)	I As the pH increases the rate of reaction decreases	1 mark	[1]
			II When pH increases by one unit, [H ⁺] decreases by a factor does the rate, so must be first order (<i>or equivalent stateme</i>)		ıs [1]
			III A catalyst (as more H ⁺ speeds the reaction up without bei equation)	ng in the 1 mark	[1]
			IV Rate = k [CH ₃ COCH ₃] [H ⁺] Units of k are mol ⁻¹ dm ⁺³ min ⁻¹ (Mark units for k consequentially if rate equation incorre	1 mark 1 mark	[2]
		(QWC)(iv) A coherent and clearly expressed response using a style appropriate complex subject matter.			
	(b)	BN	and C can both adopt the same hexagonal structure: BN and C are isoelectronic (or equivalent statement) (All three) can form three (trigonal) bonds with one unbonded p-orbital (Allow appropriate diagram(s))	1 mark 1 mark	[2]
		Both	BN and C exhibit lubricating properties: Both BN and C have a layer structure Weak van der Waals forces between layers allow slippage of the layers	1 mark 1 mark	[2]
		C is an electrical conductor but BN is an insulator at room temperature: Any two from:			
	(QW	[/] C)(b)	In C, delocalisation of electrons (between the unbonded p-orbit conduction of electricity. Unlike C, in BN each N has a full unbonded p-orbital whereas empty unbonded p-orbital. In BN, N is more electronegative than B, so electron density no spread. Legible text and accurate spelling, punctuation and grammar s meaning is clear Information organised clearly and coherently, using specialist when appropriate.	1 mark each B ha 1 mark ot evenly 1 mark to that I mark	is an
				7 5. 4. 1.	F A 03

(i) Blue 1 mark precipitate 1 mark [2] (a) $Cu^{2+} + 2OH^{-} \rightarrow Cu(OH)_{2}$ (ii) $or CuSO_4 + Ca(OH)_2 \rightarrow Cu(OH)_2 + CaSO_4$ 1 mark [1] (b) (i) Starch 1 mark Blue to colourless 1 mark [2] No moles $Na_2S_2O_3 = 12.25 \times 0.100 / 1000 = 1.225 \times 10^{-3}$ 1 mark Mass Cu = $1.225 \times 10^{-3} \times 63.5 = 0.0778$ g 1 mark % $Cu = 0.0778 \times 100 / 31.2 = 0.249 \%$ 1 mark [3] (deduct 1 mark if **both** second and third answers not to 3 significant figures) Cu^{2+} 1s²2s²2p⁶3s²3p⁶3d⁹ (i) (c) 1 mark $\text{Cu}^+ 1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^6 3\text{d}^{10}$ 1 mark [2] 3d orbitals split (by water ligands) 1 mark (In an approximately octahedral field) three d-orbitals have lower energy, two have higher energy Electrons absorb (visible light) energy to jump from lower level to higher level 1 mark The blue colour is that due to the remaining / non-absorbed frequencies 1 mark (Appropriate diagrams are acceptable alternatives). [4] (iii) Colour arises from d-d electron transitions, not possible in Cu⁺ because the 3d subshell is full. [1] (d) CCl₄ forms two layers / does not mix with water / no reaction 1 mark (i) SiCl₄ reacts explosively / exothermically or misty fumes / sharp smelling fumes / acid solution / white ppt. 1 mark $SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCl$ 1 mark [3] (Allow $Si(OH)_4$) In PbCl₂ the Pb²⁺ ion is stabilised due to the inert pair (ns²) effect 1 mark 1 mark for any **one** of the following CCl₂ and SiCl₂ are too unstable to exist because: oxidation state IV is more stable than oxidation state II at the top of the or oxidation state II increases in stability down the group or covalent bonding is more stable than ionic at the top of the group and four bonds are needed for an outer octet. [2] or insert pair effect becomes more significant down the group

Total [20]

5.