Solutions

1. (a) Any part of an optimal path is itself optimal
(b) The route chosen such that the maximum arc length is as small as possible
(c) e.g. Maximising freight by minimising fuel needed when planning multiple stage light aircraft journey

B1 cao ("port", "section", OK; "arc", "stage", activity", "event", not)
B1 cao (not min of max rate, not minimize largest arc)
B2 cao
B1 cloze "Bod" gets B1
2. Let $\mathrm{x}_{\mathrm{ij}}=1$ if worker does task, 0 otherwise B1 where x_{ij} indicates the arc from node i to node j i.e P, Q, R j E 1, 2, $3 \quad \mathrm{~B} 1$

$$
\begin{array}{lll}
\mathrm{x}_{\mathrm{p} 1}+\mathrm{x}_{\mathrm{p} 2}+\mathrm{x}_{\mathrm{p} 3}=1 & \mathrm{x}_{\mathrm{p} 1}+\mathrm{x}_{\mathrm{q} 1}+\mathrm{x}_{\mathrm{r} 1}=1 \\
\mathrm{x}_{\mathrm{q} 1}+\mathrm{x}_{\mathrm{q} 2}+\mathrm{x}_{\mathrm{q} 3}=1 \text { and } & \mathrm{x}_{\mathrm{p} 2}+\mathrm{x}_{\mathrm{q} 2}+\mathrm{x}_{\mathrm{r} 2}=1 \\
\mathrm{x}_{\mathrm{r} 1}+\mathrm{x}_{\mathrm{r} 2}+\mathrm{x}_{\mathrm{r} 3}=1 & \mathrm{x}_{\mathrm{p} 3}+\mathrm{x}_{\mathrm{q} 3}+\mathrm{x}_{\mathrm{r} 3}=1 & \mathrm{M} 1 \\
\text { A1 } \\
\hline
\end{array}
$$

Minimise, $\mathrm{C}=8 \mathrm{x}_{\mathrm{p} 1}+7 \mathrm{x}_{\mathrm{p} 2}+3 \mathrm{x}_{\mathrm{p} 3}+9 \mathrm{x}_{\mathrm{q} 1}+5 \mathrm{x}_{\mathrm{q} 2}+6 \mathrm{x}_{\mathrm{q} 3}+10 \mathrm{x}_{\mathrm{r} 1}+4 \mathrm{x}_{\mathrm{r} 2}+4 \mathrm{x}_{\mathrm{r} 3}$ where C is in hundreds of pounds B1, B1 2

B1 cao
B1 defining variable - attempt
M1 at least 3 equations - coefficients of one
A1 cao 3 correct
A1 cao 6 correct
B1 Minimise
B1 cao (condone a slip) (- accept cost in pounds)
3. (a) Each activity must be visited once and then we return
to the starting activity, this must be done in a minimum time B2, 1, $0 \quad 2$
B2 cao - all 3 bits in the context
B1 cloze 'Bod' is B1 (e.g. not in contect; just 'each activity once' - but not all 3; ...)
(b) $108+54+150+68+100=480$ minutes ($=8$ hours)

M1 A1 2
M1 (maybe implicit) attempting to add 5 values
A1 cao
(c) Use nearest neighbour B F T C D B

$$
\begin{align*}
& 64+68+60+54+150=396 \text { minutes }(67 \text { hours }) \tag{A1 3}\\
& \text { M1 each vertex visited once }- \text { either } N N \text { or } 2 \text { x mst-shortcut }(B D) \\
& \text { A1 cao incl return to } B(B F T C D B) \\
& \text { A1 cao }(396)
\end{align*}
$$

(d)

CT, TF, CD (Prim or Kruskal)
M1 A1
$182+64+100=346$ minutes M1 A1ft
M1 Finding correct minimum spanning tree (maybe implicit) 182
sufficient
A1 cao tree or 182
M1 adding 2 least arcs to B i.e. 100 and 64 only
A1ft cao ft from their m.s.t. value i.e. 164 and their tree length
4. (a) Adding $\mathrm{n} \geq 20$ to table to give

	H	P	R	W
A	3	5	11	9
B	3	7	8	N
C	2	5	10	7
D	8	3	7	6

Reducing rows first $\left[\begin{array}{cccc}0 & 2 & 8 & 6 \\ 0 & 4 & 5 & n-3 \\ 0 & 3 & 8 & 5 \\ 5 & 0 & 4 & 3\end{array}\right]$ then columns $\left[\begin{array}{cccc}0 & 2 & 4 & 3 \\ 0 & 4 & 1 & n-6 \\ 0 & 3 & 4 & 2 \\ -4 & -\theta--\theta & -\theta-\cdots\end{array}\right]$ M1 A13

Either

$\left[\begin{array}{cccc} 0 & 1 & 3 & 2 \\ -1 & 3 & - & -n \\ 0 & 2 & 3 & 1 \\ 0 & 2 & - \\ -6 & -\theta & -\theta & -\theta \end{array}\right]-\cdots$	or	$\left[\begin{array}{cccc} 0 & 1 & 3 & 2 \\ 0 & 3 & 0 & n \\ 0 & -7 \\ 0 & 2 & 3 & 1 \\ -6 & -0 & \theta & -\theta \end{array}\right]$	M1 A1ft	
\downarrow		\downarrow		
$\left[\begin{array}{cccc}0 & 0 & 2 & 1 \\ 1 & 3 & 0 & n-7 \\ 0 & 1 & 2 & 0 \\ 7 & 0 & 0 & 0\end{array}\right]$		$\left[\begin{array}{cccc}0 & 0 & 3 & 1 \\ 0 & 2 & 0 & n-8 \\ 0 & 1 & 3 & 0 \\ 7 & 0 & 1 & 0\end{array}\right]$	M1 A1ft	4

A $\quad \mathrm{H} \quad \mathrm{P}$
$\mathrm{B}-\mathrm{R}$ or R
cost $£ 21000$
C \quad - W $\quad \mathrm{H}$

D - P W
(b) Not unique - gives the other solution
.

Stage	State	Action	Value
1	H	HT	4*
	I	IT	3*
	J	JT	12*
	K	KT	20*
2	D	DH	$2+4=6$
		DI	$4+3=7 *$
	E	EH	$3+4=7 *$
		EI	$4+3=7 *$
	F	FJ	$10+12=22 *$
		FK	$-8+20=12$
	G	GJ	$10+12=22$
		GK	$17+20=37 *$
3	A	AD	$3+7=10$
		AE	$2+7=9$
		AF	$-5+22=17 *$
	B	BD	$3+7=10$
		BE	$2+7=9$
		BF	$-6+22=16 *$
	C	CF	$8+22=30 *$
		CG	$-15+37=22$
4	S	SA	$2+17=19$
		SB	$3+16=19$
		SC	$-10+30=20 *$

Route S C F J T £20 000

M1 A1 2

M1 A1

A1 3

M1 A1ft

A1 ft 3

M1 A1ft 2

M1 A1 2
6. (a) Either e.g.

In an $n \times m$ problem, a degenerate solution occurs when the number of cells used is less than ($n+m-1$)

B2,1,0 2
or e.g. when all the demand for one destination is satisfied by all the supply from a source, before the final demand and supplies are allocated

> B2 cao
> B1 cloze "bod" is B1
(b) If the total supply $>$ total demand a dummy is used to absorb the excess
(c) $\left[\begin{array}{ccc}15 & & \\ 1 & 11 & 0 \\ & & 17\end{array}\right]$ B1 cao total of five numbers
(d) Shadow costs

$$
\begin{array}{lll}
\mathrm{S}_{\mathrm{A}}=0 & \mathrm{~S}_{\mathrm{B}}=-1 & \mathrm{~S}_{\mathrm{C}}=-1 \\
\mathrm{D}_{1}=62 & \mathrm{D}_{2}=49 & \mathrm{D}_{3}=1
\end{array}
$$

Improvement indices $\mathrm{I}_{\mathrm{A} 2}=47-0-49=-2^{*}$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{A} 3}=0-0-1=-1 \\
& \mathrm{I}_{\mathrm{C} 1}=68+1-62=7 \\
& \mathrm{I}_{\mathrm{C} 2}=58+1-49=10
\end{aligned}
$$

	$1^{(2)}$	$2^{(4)}$	$3^{(1)}$
(0)	$15-\theta$	θ	
(1) B	$1+\theta$	$11-\theta$	0
(1) C			17

M1A1A1ft 3
Entering A2, exiting B2, $\theta=0$

Shadow costs			$\mathrm{S}_{\mathrm{A}}=0$	$\mathrm{S}_{\mathrm{B}}=-1$	$\mathrm{S}_{\mathrm{C}}=-1$
			$\mathrm{D}_{1}=62$	$\mathrm{D}_{2}=47$	$\mathrm{D}_{3}=1$
Improvement indices			$\mathrm{I}_{\mathrm{A} 3}=0-0-1=-1 *$		
			$\mathrm{I}_{\mathrm{B} 2}=48+1-47=2$		
			$\mathrm{I}_{\mathrm{C} 1}=68+1-62=7$		
			$\mathrm{I}_{\mathrm{C} 2}=58+1-47=12$		
	$1^{(22)}$	$2^{(4)}$	3^{11}		
(0) A		11	θ		
(1) B	$12+\theta$		$0-\theta$		
(-1) C			17		

M1A1A1ft 3
Entering A3, exiting B3, $\theta=0$

	$1^{(2)}$	$2^{(4)}$	$3^{(1)}$
(0)	4	11	0
(1) B	12		
(1) C			17

Shadow costs

$$
\begin{array}{lll}
\mathrm{S}_{\mathrm{A}}=0 & \mathrm{~S}_{\mathrm{B}}=-1 & \mathrm{~S}_{\mathrm{C}}=0 \\
\mathrm{D}_{1}=62 & \mathrm{D}_{2}=47 & \mathrm{D}_{3}=0
\end{array}
$$

Improvement indices $\quad \mathrm{I}_{\mathrm{B} 2}=48+1-47=2$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{B} 3}=0+1-0=1 \\
& \mathrm{I}_{\mathrm{C} 1}=68-0-62=6 \quad \mathrm{~B} 1 \\
& \mathrm{I}_{\mathrm{C} 2}=58-0-47=11
\end{aligned}
$$

\therefore Optimal
Cost 1497 units
B1 4
7. (a) e.g. Maximise $\mathrm{P}=\mathrm{V}$

B1
Subject to:

$$
\begin{aligned}
& V-5 p_{1}-3 p_{2}-6 p_{3}+r=0 \\
& V-7 p_{1}-8 p_{2}-4 p_{3}+s=0 \\
& V-2 p_{1}-4 p_{2}-9 p_{3}+t=0 \\
& p_{1}+p_{2}+p_{3}(+u)=1
\end{aligned}
$$

M1
A2,1,0

B1 5
$P_{i} \geq 0$ and r, s, t, u are stack variables all ≥ 0
B1 Maximise/minimise and consistent function
M1 constraints (condone non-negativity)

- at least one correct must be equations

A2 all correct
A1 at least two correct
B1 defining variables
(b) Not reducible and a three variable problem
B1 cao - both
(c) e.g.

$\mathrm{b} v$	V	P_{1}	P_{2}	P_{3}	r	s	t	u	value
r	$\mathbf{1}$	-5	-3	-6	1	0	0	0	0
s	1	-7	-8	-4	0	1	0	0	0
t	1	-2	-4	-9	0	0	1	0	0
u	0	1	1	1	0	0	0	1	1
P	-1	0	0	0	0	0	0	0	0

b v	V	P_{1}	P_{2}	P_{3}	r		s	t	u	value		Row ops	M1 A1
V	1	-5	-3	-6	1		0	0	0	0		$\mathrm{R}_{1} / 1 \quad \mathrm{M}$	
s	0	-2	-5	2	-1		1	0	0	0		$\mathrm{R}_{2}-\mathrm{R}_{1}$	A1
t	0	-3	-1	-3	-1		0	1	0	0		$\mathrm{R}_{3}-\mathrm{R}_{1}$	B1ft
u	0	1	1	1	0		0	0	1	1		R_{4} stet	4
P	0	-5	-3	-6	1		0	0	0	0		$\mathrm{R}_{5}+\mathrm{R}_{1}$	
b v	V	P_{1}	P_{2}	P		r		s	t	u	value	Row ops	
V	1	-11	-18	0	0	-2		3	0	0	0	$\mathrm{R}_{1}+6 \mathrm{R}_{2}$	M1 A1ft

P_{3}	0	-1	$-\frac{5}{2}$	1	$1 / 2$	$1 / 2$	0	0	0	$\mathrm{R}_{2} / 2$	A 1
t	0	0	$-\frac{17}{2}$	0	$-\frac{5}{2}$	$\frac{5}{2}$	1	0	0	$\mathrm{R}_{3}+3 \mathrm{R}_{2}$	B 1 ft
u	0	2	$\frac{7}{2}$	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	1	1	$\mathrm{R}_{4}-\mathrm{R}_{2}$	4
P	0	-11	-18	0	-2	3	0	0	0	$\mathrm{R}_{5}+6 \mathrm{R}_{2}$	

8. (a) $7 x+10 y+10 z+r=3600$

$$
\begin{aligned}
& 6 x+9 y+12 z+s=3600 \\
& 2 x+3 y+4 z+t=2400 \\
& \mathrm{P}-35 x-55 y-60 z=0
\end{aligned}
$$

B2,1,0

$$
\mathrm{B} 2,0 \quad 4
$$

(b) (i)

b.v.	x	y	z	r	s	t	value	Row ops
r	2	$\frac{\mathbf{5}}{\mathbf{2}}$	0	1	$-\frac{5}{6}$	0	600	$\mathrm{R}_{1}-10 \mathrm{R}_{2}$
z	$\frac{1}{2}$	$\frac{3}{4}$	1	0	$\frac{1}{12}$	0	300	$\mathrm{R}_{2} \div 12$
t	0	0	0	0	$-\frac{1}{3}$	1	1200	$\mathrm{R}_{3}-4 \mathrm{R}_{2}$
P	-5	-10	0	0	5	0	1800	$\mathrm{R}_{4}+60 \mathrm{R}_{2}$

B1 5
(ii)

b.v.	x	y	z	r	s	t	value	Row ops
y	$\frac{4}{5}$	1	0	$\frac{2}{5}$	$-\frac{1}{3}$	0	240	$\mathrm{R}_{1} \div \frac{5}{2}$
z	$-\frac{1}{10}$	0	1	$-\frac{3}{10}$	$\frac{1}{3}$	0	120	$\mathrm{R}_{2}-\frac{3}{4} \mathrm{R}_{1}$
t	0	0	0	0	$-\frac{1}{3}$	1	1200	R_{3} stet
P	3	0	0	4	$\frac{5}{3}$	0	20400	$\mathrm{R}_{4}+10 \mathrm{R}_{1}$

9.
(a) $\mathrm{C}_{1}=103$,
$\mathrm{C}_{2}=177$,
flow $=76$

B1, B1, B1 3
(b)

M1A1 2

(c) e.g. $\mathrm{SBCDT}-6$
SBCDET-1
S B A C DET-15
Max flow is 98

B1 5
(d)

M1A1 2

(e) Maximum flow $=$ minimum cut Cut through AD, AC, BC and BE

M1
A1 2

