4733 Probability & Statistics 2

2	$U \sim B(800, 0.005) \approx Po(4)$ P(U \le 6) = 0.8893 n > 50/large, np < 5/p small	B1 M1 A1		Po(np) stated or implied Tables or formula ± 1 term, e.g. 0.7851, 0.9489, 0.1107, not 1–
2	= 0.8893			1 1 a 0 1 c 5 0 1 1 0 1 1 1 a 1 a 1 a 1 a 1 a 1 a 1 a
2				Answer 0.889 or a.r.t. 0.8893
2		B1	4	Both conditions
2		M1		Standardise with \sqrt{n} , allow $\sqrt{2}$ errors
	$\frac{23.625 - 23}{5/\sqrt{n}} = 2$	A1		Equate to 2 or a.r.t. 2.00, signs correct
		M1		Solve for \sqrt{n} , needs Φ^{-1} , <i>not</i> from /n
1	$\sqrt{n} = 16$	A1	4	256 only, allow from wrong signs
2 (1)	$n = 256$ (a) $e^{-0.42}$			
3 (i)		M1		Correct formula for $R = 0$ or 1
	(b) 0.42 $e^{-0.42}$ = 0.657 = 0.276	A1	2	P(0), a.r.t. 0.657
		Al	3	P(1), a.r.t. 0.276
(ii		M1		Po(2.1) stated or implied
	$1 - P(\le 3) = 1 - 0.8386$	M1	2	Tables or formula, e.g. 0.8386 or 0.6496 or 0.9379 or
	= 0.1614	A1	3	complement; Answer, in range [0.161, 0.162]
(ii		B2	2	At least 3 separate bars, all decreasing
				Allow histogram. Allow convex
				P(0) < P(1) but otherwise OK: B1
				Curve: B1
				[no hint of normal allowed]
4 (i)	$H_0: p = 0.14$	B2		Both correct. 1 error, B1, but x or r or \overline{x} etc: 0
- (1)	$H_0 : p = 0.14$ $H_1 : p < 0.14$	D2		Both context. I choi, BI, but x of Y of x etc. o
	B(22, 0.14)	M1		B(22, 0.14) stated or implied, e.g. N(3.08, 2.6488) or Po(3.08)
	$P(\le 2) = .86^{22} + (22 \times .86^{21} \times .14) +$	A1		Correct formula for 2 or 3 terms, or $P(\le 0) = 0.036$ and CR
	$(231 \times .86^{20} \times .14^2) = 0.3877$	A1		Correct normal for 2 of 3 terms, or $\Gamma(\le 0) = 0.050$ and CK Correct answer, a.r.t. 0.388, or CR is = 0
	> 0.1	B1		Explicitly compare 0.1 or CR with 2, OK from Po but <i>not</i> from N
	Do not reject H_0 . Insufficient	M1		Correct comparison type and conclusion, needs binomial, at least
	evidence that company			2 terms, <i>not</i> from $P(< 2)$
	overestimates viewing proportion	A1	8	Contextualised, some acknowledgement of uncertainty
	overestimates viewing proportion		-	[SR: Normal: B2 M1 A0 B0 M0]
				[SR: 2-tailed, or $p > 0.14$, P(≥ 2): B1M1A2B0M1A1]
(ii	Selected independently	B1		Independent selection
, II)	Each adult equally likely to be	B1	2	Choice of sample elements equally likely (no credit if not
	chosen		-	focussed on selection)
				[Only "All samples of size <i>n</i> equally likely": B1 only unless
				related to Binomial conditions]
5 (i)	1 [/	B1		Horizontal straight line
		B1		Symmetrical U-shaped curve
		B1	3	Both correct, including relationship between the two and not
			·	extending beyond $[-2, 2]$, curve through $(0,0)$
(ii	S is equally likely to take any	B2	2	Correct statement about both distributions, $$ on their graph
,,	value	_	-	[Correct for one only, or partial description: B1]
	<i>T</i> is more likely at extremities			<i>Not</i> "probability of <i>S</i> is constant", etc.
(iii		M1		Integrate $x^2g(x)$, limits -2, 2
, III)	$\int_{\frac{5}{64}} \int_{-2}^{2} x^{6} dx = \frac{5}{64} \left[\frac{x^{7}}{7} \right]_{-2}^{2} \left[= \frac{20}{7} \right]$	A1		Correct indefinite integral [= $5x^7/448$]
	$\begin{bmatrix} 0^4 \mathbf{J}_{-2} & 0^{-1} & 0^{-1} \end{bmatrix} \begin{bmatrix} 0^4 \mathbf{J}_{-2} & 0 & 0 \end{bmatrix}$	B1		0 or 0 ² subtracted or E(X) = 0 seen, not $\int x^2 f(x) dx - \int x f(x) dx$
	-0^{2}			Answer $\frac{20}{7}$ or $2\frac{6}{7}$ or a.r.t. 2.86, don't need 0
		A1	4	$\frac{-5}{7} \text{ or } a.1.t. 2.00, \text{ doin t field 0}$
	$=\frac{20}{7}$			

6	(i)		M1		50.0 ± 10.0 (1.06/81) allow are size only allow of smart
U	(I)	$50.0 \pm 1.96 \sqrt{\frac{20.25}{81}} = 50.0 \pm 0.98$	B1		$50.0 \pm z\sqrt{(1.96/81)}$, allow one sign only, allow $\sqrt{\text{errors}}$
			DI		z = 1.96 in equation (<i>not</i> just stated) Both critical values with $4.5E$ at some stage (if both 25E A1)
		=49.02, 50.98	A1A1		Both critical values, min 4 SF at some stage (if both 3SF, A1)
		\overline{W} < 49.02 and \overline{W} > 50.98	A1√	5	CR, allow $\leq \geq$, don't need \overline{W} , $$ on their CVs, can't recover
					[Ans 50 ± 0.98 : A1 only]
	<i>(</i>)				[SR: 1 tail, M1B0A0; 50.8225 or 49. 1775: A1]
	(ii)	$\frac{50.98 - 50.2}{1.56} = 1.56$	M1		Standardise one limit with same SD as in (i)
		0.5	A1		A.r.t. 1.56, allow – Can allow $$ here
		$\frac{49.02 - 50.2}{0.5} = -2.36$	A1 M1		A.r.t. -2.36 , allow + if very unfair
		0.5	M1 A1	5	Correct handling of tails for Type II error
		$\Phi(1.56) - \Phi(-2.36) = 0.9315$	AI	5	Answer in range [0.931, 0.932]
	<i>(</i>)		D1	1	[SR 1-tail M1; -1.245 or 2.045 A1; 0.893 or 0.9795 A1]
	(iii)	It would get smaller	B1	1	No reason needed, but withhold if definitely wrong reason seen.
7	(*)	<u> </u>	D1		Allow from 1-tail 13.7 stated
/	(i)	$\hat{\mu} = \bar{t} = 13.7$	B1 M1		
		$\frac{12657.28}{64} - 13.7^2 [=10.08]; \ \times \frac{64}{63}$			Correct formula for biased estimate
		64	M1		$\times \frac{64}{63}$ used, or equivalent, can come in later
		= 10.24	A1		Variance or SD 10.24 or 10.2
		$H_0: \mu = 13.1, H_1: \mu > 13.1$	B2		Both correct.
		13.7 - 13.1 = 1.5 or $p = 0.0668$			[SR: One error, B1, but x or t or \overline{x} or \overline{t} , 0]
		$\frac{10.24}{\sqrt{10.24}}$ 11.5 or p 0.0000	M1		Standardise, or find CV, with $\sqrt{64}$ or 64
		• • • •	A1		$z = a.r.t. 1.50$, or $p = 0.0668$, or CV 13.758 [$\sqrt{\text{ on } z}$]
		1.5 < 1.645 or $0.0668 > 0.05$	B1		Compare $z \& 1.645$, or $p \& 0.05$ (must be correct tail),
					or <i>z</i> = 1.645 & 13 with CV
		Do not reject H_0 . Insufficient	M1		Correct comparison & conclusion, needs 64, <i>not</i> $\mu = 13.7$
		evidence that time taken on	A1	11	Contextualised, some acknowledgement of uncertainty
		average is greater than 13.1 min			[13.1 – 13.7: (6), M1 A0 B1 M0]
	(ii)	Yes, not told that dist is normal	B1	1	Equivalent statement, not "n is large", don't need "yes"
8	(i)	N(14.7, 4.41)	M1		Normal, attempt at <i>np</i>
		Valid because	A1		Both parameters correct
		np = 14.7 > 5; nq = 6.3 > 5	B1		Check $np > 5$; If both asserted but not both
		$1 - \Phi\left(\frac{15.5 - 14.7}{\sqrt{4.41}}\right) = 1 - \Phi(0.381)$	B1		nq or npq > 5 14.7 and 6.3 seen: B1 only
		$1 (\sqrt{4.41})$	3.61		[Allow " <i>n</i> large, <i>p</i> close to $\frac{1}{2}$ "]
		= 1 - 0.6484	M1		Standardise, answer < 0.5, no \sqrt{n}
		= 0.3516	A1 A1	7	z, a.r.t. 0.381
					Answer in range [0.351, 0.352] [Exact: M0]
	(ii)	$\overline{K} \sim N(14.7, 4.41/36)$	M1		Normal, their <i>np</i> from (i)
		$[= N(14.7, 0.35^2)]$	A1√		Their variance/36
		Valid by Central Limit Theorem	B1		Refer to CLT or large $n (= 36, not 21)$, or " $K \sim N$ so $\overline{K} \sim N$ ",
		as 36 is large	3.61		not same as (i), not $np > 5$, $nq > 5$ for \overline{K}
		$\Phi\left(\frac{14.0 + \frac{1}{72} - 14.7}{\sqrt{4.41/36}}\right) = \Phi(-1.96)$	M1		Standardise 14.0 with 36 or $\sqrt{36}$
		$(\sqrt{4.41/36})$	A1 A1		cc included, allow 0.5 here, e.g. $14.5 - 14.7$ z = -1.96 or -2.00 or -2.04, allow + if answer < 0.5
		= 0.025	A1 A1	7	z = -1.96 of -2.00 of -2.04 , and $w + 11$ answer $< 0.50.025 or 0.0228$
			AI	'	[0.223 of 0.0228 [0.284 loses last 2] [Po(25.2) etc: probably 0]
	OR:	$B(756, 0.7) \approx N(529.2, 158.76)$	M1M1	Δ1	×36; N(529.6,); 158.76
	UA.		B1	A1	×30; $N(529.0,)$; 158.70 CLT as above, or $np > 5$, $nq > 5$, can be asserted here
		$\Phi\left(\frac{504.5 - 529.2}{\sqrt{158.76}}\right) = \Phi(-1.96)$	M1		Standardise 14×36
		\ √158.76 <i>)</i>	A1		cc correct and \sqrt{npq}
		= 0.025	A1		cc correct and \sqrt{npq} 0.025 or 0.0228
			111		0.023 01 0.0228