4733 Probability \＆Statistics 2

1	$\begin{aligned} & U \sim \mathrm{~B}(800,0.005) \approx \mathrm{Po}(4) \\ & \mathrm{P}(U \leq 6) \quad=0.8893 \\ & n>50 / \text { large, } n p<5 / p \text { small } \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { B1 } & \mathbf{4} \\ \hline \end{array}$	Po（np）stated or implied Tables or formula ± 1 term，e．g． $0.7851,0.9489,0.1107$ ，not $1-$ Answer 0.889 or a．r．t． 0.8893 Both conditions Sta
2	$\begin{array}{ll} \frac{23.625-23}{5 / \sqrt{n}}=2 & \\ \sqrt{n}=16 & n=\mathbf{2 5 6} \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Standardise with $\sqrt{ }$ n，allow $\sqrt{ } /{ }^{2}$ errors Equate to 2 or a．r．t． 2.00 ，signs correct Solve for V_{n} ，needs Φ^{-1} ，not from $/ n$ 256 only，allow from wrong signs
3 （i）	（a） $=0.657$ （b） $0.42 e^{-0.42}=\mathbf{0 . 2 7 6}$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } & \\ \text { A1 } & 3 \\ \hline \end{array}$	Correct formula for $R=0$ or 1 $\mathrm{P}(0)$ ，a．r．t． 0.657 $\mathrm{P}(1)$ ，a．r．t． 0.276
（ii）	$\begin{aligned} & \operatorname{Po(2.1)} \\ & 1-\mathrm{P}(\leq 3)=1-0.8386 \\ & =\mathbf{0 . 1 6 1 4} \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	Po（2．1）stated or implied Tables or formula，e．g． 0.8386 or 0.6496 or 0.9379 or complement；Answer，in range［0．161，0．162］
（iii）		B2	At least 3 separate bars，all decreasing Allow histogram．Allow convex $\mathrm{P}(0)<\mathrm{P}(1)$ but otherwise OK：B1 Curve：B1 ［no hint of normal allowed］
4 （i）	$\begin{aligned} & \mathrm{H}_{0}: p=0.14 \\ & \mathrm{H}_{1}: p<0.14 \\ & \mathrm{~B}(22,0.14) \\ & \mathrm{P}(\leq 2)=.86^{22}+\left(22 \times .86^{21} \times .14\right)+ \\ & \left(231 \times .86^{20} \times .14^{2}\right)=\mathbf{0 . 3 8 7 7} \\ & >0.1 \\ & \text { Do not reject } \mathrm{H}_{0} \text {. Insufficient } \\ & \text { evidence that company } \\ & \text { overestimates viewing proportion } \end{aligned}$	B2 M1 A1 A1 B1 M1 A1	Both correct． 1 error，B1，but x or r or \bar{x} etc： 0 $\mathrm{B}(22,0.14)$ stated or implied，e．g． $\mathrm{N}(3.08,2.6488)$ or $\mathrm{Po}(3.08)$ Correct formula for 2 or 3 terms，or $\mathrm{P}(\leq 0)=0.036$ and CR Correct answer，a．r．t． 0.388 ，or CR is $=0$ Explicitly compare 0.1 or CR with 2，OK from Po but not from N Correct comparison type and conclusion，needs binomial，at least 2 terms，not from $\mathrm{P}(<2)$ Contextualised，some acknowledgement of uncertainty ［SR：Normal：B2 M1 A0 B0 M0］ ［SR：2－tailed，or $p>0.14, \mathrm{P}(\geq 2)$ ：B1M1A2B0M1A1］
（ii）	Selected independently Each adult equally likely to be chosen	$\begin{aligned} & -71 \\ & \text { B1 } \end{aligned}$	Independent selection Choice of sample elements equally likely（no credit if not focussed on selection） ［Only＂All samples of size n equally likely＂：B1 only unless related to Binomial conditions］
5 （i）		$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Horizontal straight line Symmetrical U－shaped curve Both correct，including relationship between the two and not extending beyond $[-2,2]$ ，curve through $(0,0)$
（ii）	S is equally likely to take any value T is more likely at extremities	B2	Correct statement about both distributions，$\sqrt{ }$ on their graph ［Correct for one only，or partial description：B1］ Not＂probability of S is constant＂，etc．
（iii）	$\begin{aligned} & \frac{5}{64} \int_{-2}^{2} x^{6} d x=\frac{5}{64}\left[\frac{x^{7}}{7}\right]_{-2}^{2}\left[=\frac{20}{7}\right] \\ & -0^{2} \\ & =\frac{20}{7} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \\ & \text { A1 } \end{aligned}$	Integrate $x^{2} \mathrm{~g}(x)$ ，limits $-2,2$ Correct indefinite integral $\left[=5 x^{7} / 448\right]$ 0 or 0^{2} subtracted or $\mathrm{E}(X)=0$ seen，not $\int_{x^{2}} \mathrm{f}(x) \mathrm{d} x-\iint_{\mathrm{f}}(x) \mathrm{d} x$ Answer $\frac{20}{7}$ or $2 \frac{6}{7}$ or a．r．t． 2.86 ，don＇t need 0 7

6 （i）	$\begin{aligned} & 50.0 \pm 1.96 \sqrt{\frac{20.25}{81}}=50.0 \pm 0.98 \\ & =49.02,50.98 \\ & \bar{W}<49.02 \text { and } \bar{W}>50.98 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { B1 } \\ \text { A1A1 } & \\ \text { A1 } \sqrt{2} & 5 \end{array}$	$50.0 \pm z \sqrt{ }(1.96 / 81)$ ，allow one sign only，allow $\sqrt{ }$ errors $z=1.96$ in equation（not just stated） Both critical values，min 4 SF at some stage（if both 3SF，A1） $C R$ ，allow \leq / \geq ，don＇t need $\bar{W}, \sqrt{ }$ on their CVs，can＇t recover ［Ans 50 ± 0.98 ：A1 only］ ［SR： 1 tail，M1B0A0； 50.8225 or 49．1775：A1］
（ii）	$\begin{aligned} & \frac{50.98-50.2}{0.5}=1.56 \\ & \frac{49.02-50.2}{0.5}=-2.36 \\ & \Phi(1.56)-\Phi(-2.36)=\mathbf{0 . 9 3 1 5} \end{aligned}$	M1 A1 A1 M1 A1 $\mathbf{5}$	Standardise one limit with same SD as in（i） $\left.\begin{array}{ll}\text { A．r．t．} 1.56 \text { ，allow }- \\ \text { A．r．t．}-2.36 \text { ，allow }+\end{array}\right\} \quad \begin{aligned} & \text { Can allow } \sqrt{ } \text { here } \\ & \text { if very unfair }\end{aligned}$ Correct handling of tails for Type II error Answer in range［0．931，0．932］ ［SR 1－tail M1；－1．245 or 2.045 A1； 0.893 or 0.9795 A1］
（iii）	It would get smaller	B1	No reason needed，but withhold if definitely wrong reason seen． Allow from 1－tail
7 （i）	$\begin{aligned} & \text { } \begin{array}{l} \hat{\mu}=\bar{t}=13.7 \\ \begin{aligned} & \frac{12657.28}{64}-13.7^{2} \quad[=10.08] ; \times \frac{64}{63} \\ & \quad=10.24 \end{aligned} \\ \begin{array}{c} \mathrm{H}_{0}: \mu=13.1, \mathrm{H}_{1}: \mu>13.1 \\ \frac{13.7-13.1}{\sqrt{10.24 / 64}}=1.5 \text { or } p=0.0668 \end{array} \\ 1.5<1.645 \text { or } 0.0668>0.05 \end{array} \end{aligned}$ Do not reject H_{0} ．Insufficient evidence that time taken on average is greater than 13.1 min	 B1 M1 M1 A1 B2 M1 A1 B1 M1 A1 $\mathbf{1 1}$	13.7 stated Correct formula for biased estimate $\times \frac{64}{63}$ used，or equivalent，can come in later Variance or SD 10.24 or 10.2 Both correct． ［SR：One error，B1，but x or t or \bar{x} or $\bar{t}, 0$ ］ Standardise，or find CV，with $\sqrt{ } 64$ or 64 $z=$ a．r．t． 1.50 ，or $p=0.0668$ ，or CV $13.758[\sqrt{ }$ on $z]$ Compare $z \& 1.645$ ，or $p \& 0.05$（must be correct tail）， or $z=1.645 \& 13$ with CV Correct comparison \＆conclusion，needs 64，not $\mu=13.7$ Contextualised，some acknowledgement of uncertainty ［13．1－13．7：（6），M1 A0 B1 M0］．
（ii）	Yes，not told that dist is normal	B1 1	Equivalent statement，not＂n is large＂，don’t need＂yes＂
8 （i）	$\mathrm{N}(14.7,4.41)$ Valid because $\begin{aligned} n p=14.7>5 ; n q & =6.3>5 \\ 1-\Phi\left(\frac{15.5-14.7}{\sqrt{4.41}}\right) & =1-\Phi(0.381) \\ =1-0.6484 & =\mathbf{0 . 3 5 1 6} \end{aligned}$	M1 A1 B1 B1 M1 A1 A1 7	
（ii）	$\begin{gathered} \bar{K} \sim \mathrm{~N}(14.7,4.41 / 36) \\ {\left[=\mathrm{N}\left(14.7,0.35^{2}\right)\right]} \end{gathered}$ Valid by Central Limit Theorem as 36 is large $\begin{aligned} \Phi\left(\frac{14.0+\frac{1}{72}-14.7}{\sqrt{4.41 / 36}}\right) & =\Phi(-1.96) \\ & =\mathbf{0 . 0 2 5} \end{aligned}$	M1 A1 $\sqrt{ }$ B1 M1 A1 A1 A1 7	```Normal, their \(n p\) from (i) Their variance/36 Refer to CLT or large \(n\) (= 36, not 21), or " \(K \sim \mathrm{~N}\) so \(\bar{K} \sim \mathrm{~N}\) ", not same as (i), not \(n p>5, n q>5\) for \(\bar{K}\) Standardise 14.0 with 36 or \(\sqrt{ } 36\) cc included, allow 0.5 here, e.g. \(14.5-14.7\) \(z=-1.96\) or -2.00 or -2.04 , allow + if answer \(<0.5\) 0.025 or 0.0228 [0.284 loses last 2] [Po(25.2) etc: probably 0]```
OR：	$\begin{aligned} & \mathrm{B}(756,0.7) \approx \mathrm{N}(529.2,158.76) \\ & \Phi\left(\frac{504.5-529.2}{\sqrt{158.76}}\right)= \\ & =(-1.96) \\ & = \end{aligned}$	$\begin{aligned} & \text { M1M1A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\times 36 ; \mathrm{N}(529.6, \ldots) ; 158.76$ CLT as above，or $n p>5, n q>5$ ，can be asserted here Standardise 14×36 cc correct and $\sqrt{ } n p q$ 0.025 or 0.0228

