PMT

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

JANUARY 2014

CH1

Section A

Q.4 Combustion of C and
$$H_2 = (2 \times -394) + (3 \times -286)$$

= -1646 kJ mol⁻¹ (1)

$$\Delta H = -1646 - (-1560) = -86 \text{ kJ mol}^{-1}$$
 (1)

2 1 Formula =
$$Ag_2S$$
 (1) [2]

Total Section A [10]

PMT

Section B

Q.6 (a) (i)
$$\mathbf{B}$$
 is ${}^{37}\text{Cl}^+$ (1) (2) \mathbf{C} is $({}^{35}\text{Cl} - {}^{35}\text{Cl})^+$

(ii)
$$C = 54$$
, $E = 6$ (1) Ratio of $C:E$ is 9:1 (1) [2]

(iii) Ratio of
$${}^{35}\text{Cl}:{}^{37}\text{Cl}$$
 is 3:1 (1) Ratio of ${}^{35}\text{Cl} - {}^{35}\text{Cl}:{}^{37}\text{Cl} - {}^{37}\text{Cl}$ is 3:1 × 3:1 = 9:1 (1)

or

Probability of atom being
35
Cl is 3 4 and that of 37 Cl is 1 4 (1)

Probability of $^{35}CI - ^{35}CI$ is $^{3}4 \times ^{3}4 = 9/16$ and $^{37}CI - ^{37}CI$ is $^{1}4 \times ^{1}4 = 1/16$ (1) [2]

(b)
$$A_r = (79 \times 50.69) + (81 \times 49.31)$$
 (1)

$$A_{\rm r} = 79.99$$
 (1)

Total [8]

PMT

Q.7	(a)		Use weighing scales to weigh the metal oxide (1) Use measuring cylinder to pour hydrogen peroxide solution and water into a conical flask (1) Immerse flask in water bath at 35 °C (1) Add oxide to flask and connect flask to gas syringe (1) Measure volume of oxygen every minute for 10 minutes / at regular time intervals (1)	
			(any 4 of above, credit possible from labelled diagram)	[4]
	(b)		Oxide A because reaction is faster	[1]
	(c)	(i)	18 cm ³	[1]
		(ii)	10 cm ³	[1]
	(d)		Concentration of hydrogen peroxide has decreased (1) reaction rate decreases / fewer successful collisions (1)	[2]
	(e)		All the hydrogen peroxide has decomposed / the same quantity of hydrogen peroxide was used	[1]
	(f)		25 cm ³	[1]
	(g)		Reaction will take less time (1) Reactants collide with more (kinetic) energy (1) More molecules have the required activation energy (1)	[3]
			QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter	[1]

Total [15]

PMT

Q.8	(a)	Electrons within atoms occupy fixed energy levels increasing energy / nitrogen has electrons in two s $1s^2\ 2s^2\ 2p^3$	hells (of (1) (1)	
		Electrons occupy atomic orbitals within these shell The first shell in nitrogen has s orbitals and the sec and p orbitals (1)		Is	
		A maximum of two electrons can occupy any orbita Each s orbital in nitrogen contains two electrons	al / (1)		
		Each with opposite spins	(1)		
		Orbitals of the same type are grouped together as There are three p orbitals in nitrogen's p sub-shell		ell /	
		Each orbital in a sub-shell will fill with one electron starts / In nitrogen's p sub-shell each orbital contai electron	•	airing	
		(configuration mark + any 3 of above)			[4]
		QWC The information is organised clearly and cousing specialist vocabulary where appropriate	herently,		[1]
	(b)	Atomic spectrum of hydrogen is a series of lines (1 that get closer as their frequency increases (1) (credit possible from labelled diagram))		
		Lines arise from atom / electrons being excited by energy (1) electron jumping up to a higher energy level (1) falling back down and emitting energy (in the form electromagnetic radiation) (1) to the n = 2 level (1) (any three points for maximum 3 marks)		3	
		Since lines are discrete energy levels must have fi Since energy emitted is equal to the difference bet energy levels, ΔE is a fixed quantity or quantum		1	[6]

(c)	(i)	It has greater nuclear charge (1) but little / no extra shielding (1)		
	(ii)	In Be less shielding of outer electron (1) outweighs smaller nuclear charge (1)		
		or		
		Be outer electron closer to nucleus (1) Be has greater effective nuclear charge (1)	[2]	
	(iii)	I. Too much energy required to form B ³⁺ ion	[1]	
		II. $K^{+}(g) \rightarrow K^{2+}(g) + e^{-}$	[1]	
		III. Value of 1 st and 3 rd I.E. will be higher (1) Value of 2 nd I.E. will be smaller (1) (accept large jump in I.E. value would be between 2 nd and 3 electrons for 1 mark)	3 rd [2]	

Total [19]

PMT

PMT

Total [18]

[1]

QWC Legibility of text; accuracy of spelling, punctuation and

grammar, clarity of meaning

Q.10 (a) Moles NaCl =
$$\frac{900}{58.5}$$
 = 15.38 (1)

Moles Na₂CO₃ = 7.69 (1)

Mass Na₂CO₃ = 7.69 × 106 = 815(.4) g (1)

(b) (i) 2.52 g

(ii) Moles
$$Na_2CO_3 = 0.02$$
 (1) Moles $H_2O = 0.14$ (1) $x = 7$ (1) [2]

(c) (i) Moles =
$$0.5 \times 0.018 = 0.009$$
 [1]

(iii)
$$0.0045 \times 106 = 0.477$$
 [1]

Total [10]

[3]

PMT

Total Section B [70]