Solutions

1. (a) $x=9, y=11$

B1, B1
1B1: cao (permit B1 if 2 correct answers, but transposed)
2B1: cao
(b) AC DC DT ET

B2,1,0 2
1B1: correct (condone one error - omission or extra)
2B1: all correct (no omissions or extras)
(c) 36

B1 1
1B1: cao
(d) $\mathrm{C}_{1}=49, \mathrm{C}_{2}=48, \mathrm{C}_{3}=39$

B1, B1, B1
1B1: cao
2B1: cao
3B1: cao
(e) e.g. SAECT

1B1: A correct route (flow value of 1 given)
(f) maximum flow = minimum cut
cut through DT, DC, AC and AE
1M1: Must have attempted (e) and made an attempt at a cut.
1A1: cut correct - may be drawn. Refer to max flow-min cut theorem three words out of fours.
2. (a) A walk is a finite sequence of arcs such that the end vertex
of one arc is the start vertex of the next.
B2,1,0 2
1B1: Probably one of the two below but accept correct relevant statement- bod gets B1, generous.
2B1: A good clear complete answer: End vertex = start vertex + finite.
(b) A tour is a walk that visits every vertex, returning to its stating vertex.
1B1: Probably one of the two below but accept correct relevant statement- bod gets B1, generous.
2B1: A good clear complete answer: Every vertex + return to start.

From the D1 and D2 glossaries

D1
A path is a finite sequence of edges, such that the end vertex of one edge in the sequence is the start vertex of the next, and in which no vertex appears more than once.
A cycle (circuit) is a closed path, ie the end vertex of the last edge is the start vertex of the first edge.
D2
A walk in a network is a finite sequence of edges such that the end vertex of one edge is the start vertex of the next.
A walk which visits every vertex, returning to its starting vertex, is called a tour.
3. (a) Total supply $>$ total demand
(b) Adds 0, 0 and 5 to the dummy column

B2,1,0

	L	E	D
A	35	20	
B		40	5

(d)

	80		70	20
		L	E	D
0	A	35	20	
-20	B		40	5

$\mathrm{I}_{\mathrm{AD}}=0-0-20=-20$
$\mathrm{I}_{\mathrm{BL}}=60+20-80=0$

	L	E	D
A	35	$20-\theta$	θ
B		$40+\theta$	$5-\theta$

$\theta=5$; entering square is AD ; exiting square is BD
(e) Cost is (£) 6100

B1
4. (a) Maximin : we seek a route where the shortest arc used is a great as possible.
Minimax : we seek a route where the longest arc used is a small as possible.

		80	70	0
0		L	E	D
-20	A	35	15	5
B		45		

$\mathrm{I}_{\mathrm{BL}}=60+20-80=0$
$\mathrm{I}_{\mathrm{BD}}=0+20-0=20$
(b)

Stage	State	Action	Dest.	Value
	G	GR	R	132^{*}
1	H	HR	R	175^{*}
	I	IR	R	139^{*}
	D	DG	G	$\min (175,132)=132$
		DH	H	$\min (160,175)=160^{*}$
2	E	EG	G	$\min (162,132)=132$
		EH	H	$\min (144,175)=144^{*}$
		EI	I	$\min (102,139)=102$
	F	FH	H	$\min (145,175)=145^{*}$
		FI	I	$\min (210,139)=139$
	A	AD	D	$\min (185,160)=160^{*}$
		AE	E	$\min (279,144)=144$
3	B	BD	D	$\min (119,160)=119$
		BE	E	$\min (250,144)=144^{*}$
		BF	F	$\min (123,145)=123$
	C	CE	E	$\min (240,144)=144$
		CF	F	$\min (170,145)=145^{*}$
	L	LA	A	$\min (155,160)=155^{*}$
4		LB	B	$\min (190,144)=144$
		LC	C	$\min (148,145)=145$

5. (a) For each row the element in column x must be less than the element in column y.
(b) Row minimum $\{2,4,3\}$ row maximin $=4$

Column maximum $\{6,5,6\}$ column minimax $=5$
$4 \neq 5$ so not stable
A1
(c) Row 3 dominates row 1, so matrix reduces to

	M1	M2	M3
L2	4	5	6
L3	6	4	3

Let Liz play 2 with probability p and 3 with probability ($1-p$)
If Mark plays 1 : Liz's gain is $4 p+6(1-p)=6-2 p$
If Mark plays 2: Liz's gain is $5 p+4(1-p)=4+p$
M1
If Mark plays 3: Liz's gain is $6 p+3(1-p)=3+3 p$
A1 3

B2,1,0
2
$4+p=6-2 p$ M1A1
$p=\frac{2}{3}$
(d) Liz should play row 1 - never, row $2-\frac{2}{3}$ of the time,
row $3-\frac{1}{3}$ of the time
and the value of the game is $4 \frac{2}{3}$ to her.
Row 3 no longer dominates row 1 and so row 1 can not be deleted.
Use Simplex (linear programming).
6. (a) Since maximising, subtract all elements from some $\mathrm{n} \geq 53$

$$
\left[\begin{array}{cccc}
5 & 4 & 11 & 11 \\
0 & 4 & 2 & 3 \\
2 & 0 & 5 & 5 \\
6 & 3 & 7 & 10
\end{array}\right]
$$

M1A1 2

Reduce rows $\left[\begin{array}{llll}1 & 0 & 7 & 7 \\ 0 & 4 & 2 & 3 \\ 2 & 0 & 5 & 5 \\ 3 & 0 & 4 & 7\end{array}\right]$ then columns $\left[\begin{array}{llll}1 & 0 & 5 & 4 \\ 0 & 4 & 0 & 0 \\ 2 & 0 & 3 & 2 \\ 3 & 0 & 2 & 4\end{array}\right]$

M1A1ft 2

Minimum element 1
M1

A1ft

$$
\left[\begin{array}{llll}
0 & 0 & 4 & 3 \\
0 & 5 & 0 & 0 \\
1 & 0 & 2 & 1 \\
2 & 0 & 1 & 3
\end{array}\right]
$$

A1ft 3

M1

A1ftA1ft 3
(b)

$$
\left[\begin{array}{llll}
0 & 1 & 4 & 3 \tag{M1A1ft 2}\\
0 & 6 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 2
\end{array}\right] \quad\left[\begin{array}{llll}
0 & 0 & 3 & 2 \\
1 & 6 & 0 & 0 \\
1 & 0 & 1 & 0 \\
2 & 0 & 0 & 2
\end{array}\right]
$$

M1A1
2

Joe	A	A
Min-Seong	C	D
Olivia	D	B
Robert	B	C

Value $£ 197000$
7. (a) $\mathrm{GH}(38) \mathrm{GF}(56) \mathrm{CA}(57) \mathrm{EC}(59) \mathrm{FE}(61) \mathrm{CD}(64) \mathrm{CB}(68)$
(b) $2 \times 403=806(\mathrm{~km})$

B1 1
(c) e.g. DH saves 167

M1A1
AB saves 23
$806-190=616(\mathrm{~km})$
A1

(d) eg A B C E F G H D C A

B \quad C \quad A \quad E \quad F \quad G \quad H \quad D \quad B $68+57+98+61+56+38+111+108=597(\mathrm{~km}) \quad$ A1 3
(e) Delete C

M1A1M1A1ft 4
(f) \quad RMST weight $=444$

Lower bound $=444+59+57=560(\mathrm{~km})$
$560<$ length ≤ 597
B2,1,0 2
8. (a)

b.v.	x	y	z	R	s	t	Value
r	4	$\frac{7}{3}$	$\frac{5}{2}$	1	0	0	64
s	1	3	0	0	1	0	16
t	4	2	2	0	0	1	60
P	-5	$-\frac{7}{2}$	-4	0	0	0	0

b.v.	x	y	z	R	s	t	Value	Row ops
r	0	$\frac{1}{3}$	$\frac{1}{2}$	1	0	-1	4	$\mathrm{R}_{1}-4 \mathrm{R}_{3}$
s	0	$\frac{5}{2}$	$-\frac{1}{2}$	0	1	$-\frac{1}{4}$	1	$\mathrm{R}_{2}-\mathrm{R}_{3}$
x	1	$\frac{1}{2}$	$\frac{1}{2}$	0	0	$\frac{1}{4}$	15	$\mathrm{R}_{3} \div 4$
P	0	-1	$-\frac{3}{2}$	0	0	$\frac{5}{4}$	75	$\mathrm{R}_{4}+5 \mathrm{R}_{3}$

M1A1

M1A1ftA1

b.v.	x	y	z	R	s	t	Value	Row ops							
z	0	$\frac{2}{3}$	1	2	0	-2	8	$\mathrm{R}_{1} \div \frac{1}{2}$	$	$	s	0	$\frac{17}{6}$	0	1
:---:	:---:	:---:	:---:	:---:											
1	$-\frac{5}{4}$	5	$\mathrm{R}_{2}+\frac{1}{2}$ R_{1}												
x	1	$\frac{1}{6}$	0	-1											
0	$\frac{5}{4}$	11	$\mathrm{R}_{3}-\frac{1}{2}$ R_{1}												
P	0	0	0	3											
0	$-\frac{7}{4}$	87	$\mathrm{R}_{4}+\frac{3}{2}$ R_{1}												

M1A1ft M1A1 9
(b) There is still negative numbers in the profit row.

B1 1

