4734

Mark Scheme

June 2010

1(i)	Total has Poisson distribution with mean $\lambda = 0.21 \times 5 + 0.24 \times 5 = 2.25$	M1 A1	With ×5
	$P(≥2) = 1 - e^{-λ}(1+λ)$ =0.657	M1 A1 4	λ or 1+ $λ$ in brackets (their $λ$) Or interpolation from tables
(ii)	EITHER: Each length is a random sample OR: Flaws occur independently on the reels	B1 1 [5]	In context Accept randomly
2	H ₀ : $\mu =$ (or ≥) 170 , H ₁ : $\mu <$ 170 $\overline{x} =$ 167.5 $s^2 = 5.9$	B1 B1 B1	For both hypotheses; accept words SR 2-tail test: B0B1B1M1A1M1A0 Max 5/7
	EITHER: (a) $(167.5 - 170)/\sqrt{(5.9/6)}$ = - 2.52(1)	M1 A1	Standardise 167.5; + or – for M; /6 seen
	Compare with – 2.015	M1	Explicitly Allow 2.571
	OR: $(\beta) 170 - t\sqrt{(5.9/6)}$ = 168.0	M1 A1	Finding critical value or region. With $t= 2.015$ or 2.571
	Compare 167.5 with CV and reject H_0	M1	Explicitly. Allow correct use of t
	There is sufficient evidence at the 5% significance level that the machine dispenses less than 170 ml on average.	A1	M0 if <i>z</i> used SR: B1 if no explicit comparison but conclusion "correct"
		[7]	
3(i)	H_0 : There is no association between the area in which a shopper lives and the day they shop (H_1 : All alternatives)	B1	SR difference in proportions B1 define and evaluate p_1 and p_2 with H ₀ B1 for $p=0.42$
	E-Values 27.3 14.7 37.7 20.3 $\chi^2 = (4.3-0.5)^2 (27.3^{-1}+37.7^{-1}+14.7^{-1}+20.3^{-1})$	M1 A1	M1A1 for $z = \pm 1.827$ or 1.835(no pe) M1A0 Max 5/8
	= 2.606	M1 ft A1	At least one E value correct (M1)
	Compare with 2.706 Do not reject H_0 . There is insufficient evidence of an association.	A1	All correct(A1) At least one χ^2 , no or wrong cc, (M1FtE)
	SR: If H_0 association, lose 1 st B1 and last	M1 A1	All correct (A1); 2.606 or 2.61 (A1) Or use calculator ($p = 0.106$) SR: B1
	M1A1	8	if no explicit comparison, as Q2 SR: If H ₀ association, lose 1 st B1 and last M1A1
(ii)	Conclusion the same since critical value > 2.706 (and test statistic unchanged)	B1 1	OR from <i>z</i> =±2.17, SR
		[9]	

4734

Mark Scheme

June 2010

4(i)	$s^2 = (1183.65 - 246.6^2 / 70) / 69$	M1	AEF
,	Use $\overline{x} \pm zs / (70)$	M1	Allow without ft or with s^2 ; with 70
	s /√(70)	A1	Their s
			THEIR S
	1.645	A1	
	(3.10, 3.94)	A1 5	
(ii)	Change 90 to around 90	B1 1	Or equivalent
(iii)	$4(0.9)^{3}(0.1) + 0.9^{4}$	M1	Use of bino with <i>p</i> =0.9 or 0.1 and 4
` '			and
	=0.9477	A1 2	Correct terms considered. art 0.948
	-0.5477		
		[8]	
	-2.25 -4		
5(i)	$e^{-2.25} - e^{-4}$	M1	Or find last entry using $F(x)$
	× 150	A1	
	= 13.1	A1	Or 2.7 if found first
	Last: 150 – sum=2.7	A1 ft 4	Or 13.1 any accuracy
(ii)	(H ₀ : Data fits the model, H ₁ : Data does	B1	At least two correct
(")	not fit)		All correct
	,	M1*Da-	
	Combine last two cells 2^{2}	M1*Dep	In range 13.2 to 13.5
	$\chi^2 = 7.8^2/33.2 + 11.6^2/61.6 + 7.4^2/39.4 +$	A1	SR: If last 2 cells are not combined
	11.2 ² /15.8	A1	B0M1A1A1(for 13. 5) M1A1
	= 13.3(46)	M1	If no explicit comparison B1 if
	Compare with 9.348 (or 11.14), reject		conclusion follows
	H_0	A1 ft	
	(There is sufficient evidence at the $2\frac{1}{2}$ %	Dep* 6	
	-		
	significance level that) the model is not a	[40]	
	good fit	[10]	
6(i)	Anxiety scores; have normal	B2	Context + 2 valid points B2
.,	distributions;		Context + 1VP, no context +2VP B1
	common variance; independent samples		Not in words
	$H_0: \mu_E = \mu_C, H_1: \mu_E < \mu_C$	B1	
	$s^2 = (1923.56 + 1147.58)/29 (= 105.9)$	B1	Allow 1 error; eg s^2 =
			•
	$(t) = (32.16 - 38.21) / \sqrt{[105.9(18^{-1} + 13^{-1})]}$	M1	1923.56/(17or18)
		A1	All correct +
	= - 1.615	A1	47.5/(12or13)
	$t_{\rm crit} = -1.699$	B1	Or +
			Or +; accept art ±1.70
	Compare -1.615 with -1.699 and do not	M1	
	reject H_0		Or + , +. M0 if t not ±1.699,±2.045
	There is insufficient evidence at the 5%		
		A 1 44	
	significance level to show that anxiety is	A1 ft	In context and as
	reduced by listening to relaxation tapes	10	
			OR Find CV or CR: B2B1B1;
			$C= or \ge st$, $t = \pm 1.699 or \pm 2.015$
1 1			,
			M1A1
			M1A1
			M1A1 <i>t</i> = ±1.699 B1; G= 6.11(2) A1;
(ii)	Sample sizes are too small (to appeal to	B1 1	M1A1
(ii)	Sample sizes are too small (to appeal to	B1 1	M1A1 <i>t</i> = ±1.699 B1; G= 6.11(2) A1;
(ii)	Sample sizes are too small (to appeal to CLT)		M1A1 <i>t</i> = ±1.699 B1; G= 6.11(2) A1;
(ii)		B1 1 [11]	M1A1 <i>t</i> = ±1.699 B1; G= 6.11(2) A1;

Mark Scheme

June 2010

7(i)	Use $\sum F + \sum M \sim N(\mu, \sigma^2)$	M1	Sum of indep normal variables is
	$\mu = 1104.9$ $\sigma^2 = 6 \times 9.3^2 + 9 \times 8.5^2$	A1 M1	normal
	0 = 0.9.3 + 9.0.5 = 1169.2	A1	
	$P(> 1150) = 1 - \Phi([1150 - 100)]$	M1	Standardise, correct tail. M0 $\sigma/\sqrt{15}$
	1104.9]/√(1169.2)	A1	Accept .094
	= 0.0937	6	
(ii)	If unknown M, prob $\frac{1}{2}$, 6F and 9M as	M1	Considering two cases
	before.		
	If unknown W, prob $\frac{1}{2}$, 7W and 8M	B1 B1	Mean and variance
	Having N(1093.3,1183.4)	A1	
	P(> 1150)= 1 - Φ(1.648) = 0.0497	M1	Use of $\frac{1}{2}$
	$P = \frac{1}{2} \times 0.0936 + \frac{1}{2} \times 0.0497$	A1	ART 0.072
	= 0.07165	6	ART 0.072
	- 0.07105	[12]	
8(i)	$X = \frac{1}{4} S^2$	B1	
	$r \rightarrow r \rightarrow$		
	$F(s) = \int_{1}^{s} \frac{8}{3s^{3}} ds = \left[-\frac{4}{3s^{2}} \right]_{1}^{s}$	M1	
	$=\frac{4}{3}(1-1/s^2)$	A1	Ignore range here
	$G(x) = P(X \le x) = P(S \le 2\sqrt{x})$	M1	SR: B1 for G(x)=F($2\sqrt{x}$) without
	$= F(2\sqrt{x})$		justification and with correct result
		A1 ft	ft F
	$=\frac{4}{3}-\frac{1}{3x}$	AIII	
	$g(x) = \begin{cases} \frac{1}{3x^2} & \frac{1}{4} \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$	M1	For G' (<i>a</i>)
	$g(x) = \begin{cases} 3x^2 & 4 \\ 0 & \text{otherwise} \end{cases}$	B1	For range
	0 Otherwise.	_	
(;;)		7 M1	f $C(x)$ in (i)
(ii)	EITHER: $G(m) = \frac{1}{2}$		ft G(<i>x</i>) in (i)
	$\implies \frac{4}{3} - \frac{1}{3x} = \frac{1}{2}$	A1 ft	CAO
	$\Rightarrow m = \frac{2}{5}$	A1	
	- r ^m 1 1		
	OR: $\int_{1/4}^{m} \frac{1}{3x^2} dx = \frac{1}{2}$	M1	Allow wrong $\frac{1}{4}$
	$ [1]^m 1$		
	$\Rightarrow \left[-\frac{1}{3x} \right]_{1/4}^m = \frac{1}{2}$	A1	Allow wrong $\frac{1}{4}$
	$\Rightarrow \qquad m = \frac{2}{5}$	A1	CAO
	, , , , , , , , , , , , , , , , , , ,	3	
		[10]	
		• •	