General Certificate of Education (A-level) January 2012

Mathematics

MFP2

(Specification 6360)

Further Pure 2

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Convright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
−x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	y ,			
	x			
	Sketch $y = \sinh x$	B1		gradient > 0 at $(0, 0)$; no asymptotes
	Sketch $y = \operatorname{sech} x$: Symmetry about $x = 0$ with max point Asymptote $y = 0$ Point $(0, 1)$ marked or implied	B1 B1 B1	4	must not cross x-axis
(b)	$\sinh x = \frac{1}{\cosh x}$ $\sinh 2x = 2$ Use of $\ln x = \frac{1}{2} \ln \left(2 + \sqrt{5}\right)$ or	M1 M1 m1 A1	4	use of double angle formula dependent on previous M2
	$\frac{1}{2} \left(e^{2x} - e^{-2x} \right) = 2 \text{OE}$	(M1)		incorrect $\sinh x$, $\cosh x$ M0 (no marks)
	$e^{4x} - 4e^{2x} - 1 = 0$ Correct use of formula Result	(M1) (m1) (A1)	(4)	ie multiply by e^{2x} and rewrite
	Total		8	

Q	Solution	Marks	Total	Comments
2(a)	Im Re			
	Half-line with gradient < 1	В1	1	condone a short line, ie it stops at or inside circle
(b)(i)	Circle centre on L , x -coord 6 indicated touching Re $z = 0$ not at $(0, 0)$	B1 B1	2	not touching Re axis
(ii)	y-coord of centre is $2\sqrt{3}$ or $\frac{6}{\sqrt{3}}$	B1		OE; PI
	$z_0 = 6 + 2\sqrt{3} i,$ $k = 6$	B1F, B1	3	ft error in coords of centre
(iii)	Point z_1 shown	B1		PI
	$\arg \pi_1 = -\frac{1}{6}$	B1	2	
	Total		8	
3(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2\tanh x}$	В1		
	$\times \operatorname{sech}^2 x$	B1		
	$=\frac{1}{2\sinh x \cosh x}$	M1		for expressing in terms of sinh x and cosh x
	$=\frac{1}{\sinh 2x}$	A1	4	AG; PI by previous line
(b)	$\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \sqrt{1 + \frac{1}{\sinh^2 2x}}$ $= \sqrt{\frac{\cosh^2 2x}{\sinh^2 2x}}$	M1		use of formula; accept √ inserted at any stage
	$=\sqrt{\frac{\cosh^2 2x}{\sinh^2 2x}}$	m1		relevant use of $\cosh^2 - \sinh^2 = 1$
	$=\frac{\cosh 2x}{\sinh 2x}$	A1		OE
	Integral is $\frac{1}{2} \ln \sinh 2x$	M1A1		M1 for ln sinh
	$sinh(2 \ln 4) = \frac{255}{32}$ $sinh(2 \ln 2) = \frac{15}{8}$	B1B1		PI
	$s = \frac{1}{2} \ln \left(\frac{17}{4} \right)$	A1F	8	ft error in $\frac{1}{2}$
	Total		12	

Q	Solution	Marks	Total	Comments
4	Assume result true for $n = k$	WILLIAM	10141	Comments
	Then $u_{k+1} = \frac{3}{4 - \left(\frac{3^{k+1} - 3}{3^{k+1} - 1}\right)}$	M1		
	$\left(3^{k+1}-1\right)$			
	$=\frac{3(3^{k+1}-1)}{4(3^{k+1}-1)-(3^{k+1}-3)}$	A1		
	, , , , ,			
	$4 \times 3^{k+1} - 3^{k+1} = 3^{k+2}$	A1		clearly shown
	$u_{k+1} = \frac{3^{k+2} - 3}{3^{k+2} - 1}$	A1		
	$n=1$ $\frac{3^2-3}{3^2-1}=\frac{3}{4}=u_1$	B1		
	Induction proof set out properly	E1	6	must have earned previous 5 marks
	Total	21	6	THE PROPERTY OF THE PROPERTY O
5	Numerator = $e^{\frac{p\pi i}{8}}$	B1		
	Denominator = $e^{\frac{-q\pi i}{12}}$	B1		
	Fraction = $e^{\frac{p\pi i}{8} + \frac{q\pi i}{12}}$	M1		allow for attempt to subtract powers
	$= e^{\frac{\pi i}{24}(3p+2q)}$	A 1		
	$i = e^{\frac{12\pi i}{24}}$	m1		OE
	3p + 2q = 12	A1F		ft errors of sign or arithmetic slips
	p = 2, q = 3	A1	7	CAO
	Alternative 1			
	Numerator = $\cos \frac{p\pi}{8} + i \sin \frac{p\pi}{8}$	(B1)		
	Denominator = $\cos \frac{-q\pi}{12} + i \sin \frac{-q\pi}{12}$	(B1)		needs more than just $\cos \frac{q\pi}{12} - \sin \frac{p\pi}{12}$
	Fraction =	(M1)		
	$\left(\cos\frac{p\pi}{8} + i\sin\frac{p\pi}{8}\right)\left(\cos\frac{q\pi}{12} + i\sin\frac{q\pi}{12}\right)$	(M1)		
	$=\cos\frac{\pi}{24}(3p+2q)+i\sin\frac{\pi}{24}(3p+2q)$	(A1)		
	$= i \text{ if } \cos\frac{\pi}{24} (3p + 2q) = 0$			
	or $\sin\frac{\pi}{24}(3p+2q)=1$	(m1)		
	3p + 2q = 12	(A1F)		
	p = 2, q = 3	(A1)	(7)	CAO
	Alternative 2	(D1)		
	LHS $\cos \frac{p\pi}{8} + i \sin \frac{p\pi}{8}$ PHS $i \cos \frac{q\pi}{8} + \sin \frac{q\pi}{8}$	(B1)		
	RHS $i\cos\frac{q\pi}{12} + \sin\frac{q\pi}{12}$ $\cos^{p\pi} - \sin^{q\pi} \text{ or } \sin^{p\pi} - \cos^{q\pi}$	(B1)		
	$\cos\frac{p\pi}{8} = \sin\frac{q\pi}{12} \text{or} \sin\frac{p\pi}{8} = \cos\frac{q\pi}{12}$	(M1)		
	Introduction of $\frac{\pi}{2}$	(m1)		
	$\frac{p\pi}{8} = \frac{\pi}{2} - \frac{q\pi}{12}$	(A1)		
	8 2 12 3p + 2q = 12	(A1F)		
	p=2, q=3	(A1)	(7)	CAO (correct answers, insufficient
	T-4-1		7	working 3/7 only)
	Total		1	

Q	Solution	Marks	Total	Comments
6(a)	$7 + 4x - 2x^2 = 9 - 2(x - 1)^2$	M1A1	2	
<i>a</i> .)	D (1)	N/1		allow $y = h(y - 1)$ ony h
(b)	Put $u = \sqrt{2}(x-1)$	M1		allow $u = k(x-1)$ any k
	$du = \sqrt{2} dx$	A1F		1
	$du = \sqrt{2} dx$ $I = \frac{1}{\sqrt{2}} \int \frac{du}{\sqrt{9 - u^2}}$	A1F		ft error in (a); must have u^2 only, ie $\frac{1}{\sqrt{2}}$
				outside integrand
	$=\frac{1}{\sqrt{2}}\sin^{-1}\frac{u}{3}$	A1		for $\sin^{-1}\frac{u}{x}$
	Change limits or replace u	m1		provided sin ⁻¹
	$= \frac{\pi}{4\sqrt{2}} \text{ or } \frac{\pi\sqrt{2}}{8}$	A1	6	CAO
	Alternative – if integration is attempted			
	without substitution: sin ⁻¹	(M1)		
		` ´		
	$\frac{1}{\sqrt{2}}$	(A1F)		
	(x-1)	(A1)		
	$\begin{pmatrix} \sqrt{2} \\ (x-1) \\ \frac{\sqrt{2}}{3} \end{pmatrix}$	(A1F)		
	Substitution of limits	(m1)		
	$\frac{\pi}{4\sqrt{2}}$	(A1)	(6)	CAO
		(111)		
7(a)	Use of $(\sum \alpha)^2 = \sum \alpha^2 + 2\sum \alpha \beta$	M1	8	
/(a)	Ose of $(\angle a) = \angle a + 2 \angle ap$	A1	2	AG
(b)	p = 0, q = 5 + 6i	B1,B1	2	
(c)(i)	Substitute 3i for z or use $3i\beta\gamma = -r$	M1		allow for $3i\beta\gamma = r$
	$-27i + 15i - 18 + r = 0$ or $\beta \gamma = 5 + 6i + \alpha^2$	A1		any form
	r = 18 + 12i	A1F	3	one error
(ii)	Cubic is $(z-3i)(z^2+3iz-4+6i)$	M1A1	2	alaarky shayyn
(11)	or use of $\beta \gamma$ and $\beta + \gamma$	1011741	4	clearly shown
	, , , ,			
(iii)	f(-2) = 0 or equate imaginary parts	M1		correct answers no working and no shock
	$\beta = -2, \ \gamma = 2 - 3i$	A1,A1F	3	correct answers no working and no check B1 only
	Total		12	

Q	Solution	Marks	Total	Comments
8(a)	$1, e^{\frac{2\pi i}{5}}, e^{\frac{4\pi i}{5}}, e^{\frac{-2\pi i}{5}}, e^{\frac{-4\pi i}{5}}$	B1	1	accept e ⁰
(b)	$\begin{vmatrix} \frac{z^5 - 1}{z - 1} = z^4 + z^3 + z^2 + z + 1 \\ = \left(z - e^{\frac{2\pi i}{5}}\right) \left(z - e^{\frac{4\pi i}{5}}\right) \left(z - e^{\frac{-2\pi i}{5}}\right) \left(z - e^{\frac{-4\pi i}{5}}\right) \end{vmatrix}$	B1 M1A1	3	B0 if assumed accept if $e^{\frac{6\pi i}{5}}$, $e^{\frac{8\pi i}{5}}$ used here
(c)	Correct grouping of linear factors $e^{\frac{2\pi i}{5}} + e^{\frac{-2\pi i}{5}} = 2\cos\frac{2\pi}{5}$	M1 A1		clearly shown
	$ \left(z^2 - 2\cos\frac{2\pi}{5}z + 1\right) \left(z^2 - 2\cos\frac{4\pi}{5}z + 1\right) $ $ \div z^2 \text{ to give answer} $	A1 A1	4	AG
(d)	Substitute into LHS to give $w^2 + w - 1$ RHS $\left(w - 2\cos\frac{2\pi}{5}\right)\left(w - 2\cos\frac{4\pi}{5}\right)$	B1 B1		
	Solve $w^2 + w - 1 = 0$ $w = \frac{-1 \pm \sqrt{5}}{2}$	M1 A1		
	$\cos\frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}$	A1		
	with reasons for choice	E1	6	
	Total		14	
	TOTAL		75	