Unit 2 6PH02_01

Question Number	Answer	Mark
number		
1	C	(1)
	Total for question	1

Question	Answer	Mark	
Number			
2	D		(1)
	Total for question	1	
Question	Answer	Mark	
Number			
3	В		(1)
	Total for question	1	
Question	Answer	Mark	
Number			
4	В		(1)
	Total for question	1	
Question	Answer	Mark	
Number			
5	C		(1)
	Total for question	1	
Question	Answer	Mark	
Number			
6	A		(1)
	Total for question	1	
Question	Answer	Mark	
Number			(1)
7	B		(1)
	Total for question	1	
Question	Answer	Mark	
Number			(1)
8	D	4	(1)
0	Total for question	1	
Question	Answer	Mark	
Number	Δ		(1)
9	A Total for question	1	(1)
Question	Total for question	Mark	
Number	Answer	Wark	
10	A		(1)
10	Total for question	1	(1)

Question Number	Answer	Mark
11	Use of $V = IR$ to find total resistance or terminal p.d.	1
	Subtraction of resistance or p.d.s	1
	$r = 8.2 \Omega \text{ (accept } 8 \Omega)$	1
	OR see $E = I(R+r)$	1
	Substitution of values into equation	1
	$r = 8.2 \Omega (\text{accept } 8 \Omega)$	1
	Example of answer Total $R = 1.5 \text{ V} \div (17 \times 10^{-3} \text{ A}) = 88.2 \Omega$	
	$r = 88.2 - 80 = 8.2 \Omega$	
	Total for question	3

Question	Answer	Mark
Number		
12	Attempt to use $I = Q / t$	1
	use of $e = 1.6 \times 10^{-19}$	1
	$I = 2.8 \times 10^{6} \text{ A [C s^{-1}]}$	1
	[omit e gives answer 1.73 × 10 ²⁵ scores 1]	
	Example of answer	
	$I = (2.6 \times 10^{26} \times 1.6 \times 10^{-19} \text{ C}) \div 15 \text{ s}$	
	$I = 2.77 \times 10^{6} \text{ A}$	
	Total for question	3

Question	Answer	Mark
Number		
13 (a)	Diffraction is the spreading out of the wave	1
	As it passes through an aperture/around an obstacle	1
(b) (i)	Electrons can behave as waves OR electrons have wave like properties OR electrons act like wave particles	1
(ii)	$\lambda \approx$ spacing/gap between atoms OR the size of the atoms OR spacing/gap in the graphite	1

Total for question4

Question number	Answer	Mark
14(a)	Doppler	1
(b)	MAX 3	
	Ambulance moving towards,	
	higher frequency/pitch (1)	
	Wavelength shorter/waves bunch together (1)	
	Ambulance moving away,	
	lower frequency/pitch (1)	
	wavelength increased/waves spread out (1)	
	(wavelength marks may be awarded on a diagram)	
		Max 3
(C)	Reference to a higher/lower frequency/wavelength/pitch scores 1	
	Change in frequency is greater OR even higher/ lower frequency OR	
	range of frequencies greater scores 2	
		2
	Total for question	6

Question	Answer	Mark
Number		
15(a)	Use of V=IR	1
	<i>V</i> = 3.0 V	1
(b)	pd across 30 Ω resistor = 6.0 V ecf their answer (a)	1
	$I_2 = 6.0/30 = 0.20 \text{ A}$	1
(c)	$l_1 = 0.60 - 0.20 = 0.40 $ A	1
	$R = 15 \Omega$ full ecf their answer for I_2 and their V across 30 Ω	1
	Total for question	6

更多咨询请登录

Question	Answer	Mark
Number		
16	 The answer must be clear and organised in a logical sequence Different currents / current divides in parallel circuit(1) 	
	 Same potential difference/voltage across each lamp (1) 	
	• Use of $P = V^2 / R$ OR $P = V/$ if identified $I_A < I_B$ (1)	
	 Leading to high resistance, smaller power (1) 	
	 Iamp B will be brighter/ Iamp A dimmer (1) 	
	 Each electron loses the same energy (1) 	
	 There are more electrons/sec in B (1) 	
	 Hence greater total energy loss /sec in B (1) 	
		Max 5
	Total for question	5

Question	Answer	Mark
Number		
17 (a)	A statement which implies only certain energies are allowed e.g.	
	Allowed/possible energy of atom/electron (in an atom)	
	Discrete energy of an atom/electron	
	One of the energies of the atom/electron	1
	Energy an atom/electron can have	
(b)	Photon is a (discrete) package/packet/quantum of (electromagnetic) energy/particle of light	1

(c)	(energy of) E_2 - (energy of)E $_1$	1
(-1)		1
(d)	See $E = h c / \lambda$ OR use of $v = f\lambda$	1
	Substitution into $E = h c / \lambda$ OR use of $E = hf$	1
	$E = 3.14 \times 10^{-19} \text{ J}$ or 1.96 eV	1
	Example of answer	
	$E = (6.63 \times 10^{-34} \text{ Js} \times 3 \times 10^{-8}) \div 6.33 \times 10^{-7} \text{ m}$	
	$E = 3.14 \times 10^{-19} \text{ J}$	
	Total for question	6

Question	Answer	Mark
Number		
18	Addition of words (order essential)	
	photon	1
	metal	1
	energy (allow mass, charge, momentum)	1
	(photo)electron	1
	work function (of the metal)	1
	Total for question	5

Question	Answer	Mark
Number		
19(a)	Ray drawn along edge of prism (labelled X) (ignore a reflected ray)	1
(b)(i)	$n = 3 \times 10^{8} \div 1.96 \times 10^{8}$	1
(b)(i)		· ·
	n = 1.53 (no unit, ue if one given)	1
(b)(ii)	Use of sin (critical angle) = 1/ n OR use of sin i/sin r = v_1/v_2	1
	= n	1
	$c = 41^{\circ}$	
	Ded light, refrection towards normal at first face but loss	1
(C)	Red light: refraction towards normal at first face but less than refraction for blue light	1
	C C	1
	Refracts into air at second face with angle in air > angle in glass	
	Total for question	7

Question	Answer	Mark
Number		
20(a)	The answer must be clear, organised in a logical sequence and uses specialist vocabulary	
	Interference (pattern) produced / superposition occurs/ standing wave formed	1
	Maxima related to constructive interference/antinode and/or minima related to destructive interference/node	1
	Maxima/antinode formed where the waves are in phase / path difference $n\lambda$	1
	Minima/node formed where the waves are in antiphase / path difference = ($n+\frac{1}{2}$) λ	1
	[out of phase is not sufficient]	
(b)(i)	Distance between adjacent maxima = $\lambda/2$	1
	Wavelength = 0.1 m	1
(b)(ii)	Use of $v = f \lambda$ with their λ from (b)(i)	1
	Speed = 330 m s ⁻¹ ecf their λ	1
	Example of answer	
	$v = 3300 \times 0.1$	
	$v = 330 \text{ m s}^{-1}$	
(c)(i) and (ii)	(mark (i) and (ii) as one section	
	(minima never zero) because there is not complete cancellation/overall displacement is not zero/ not total destructive interference	1
	Because the waves have different amplitudes/amplitude decreases with distance	
	OR	
	energy loss due to reflection or spreading out	

OR	1
reflection off other surfaces	
As the microphone moves towards the plate, the path difference decreases	1
Amplitudes (of waves) get similar	1
Total for question	12

Question	Answer	Mark
Number		
21(a)	Effect of stretching wire	
	Refers to $R = \rho I / A$	1
	Increasing length leads to increase in resistance	1
	Decreasing area leads to increase in resistance [must relate thinner to area]	1
	[last two points may be combined to give single statement, can score both marks]	
(b)	Desistance coloulation	
(b)	Resistance calculation	1
	Use of $R = \rho I / A$	1
	× 8	1
	$R = 0.22 (\Omega)$	1
	[Omitting x8 gives R = 0.028 Ω scores 1]	
	Example of answer	
	$R = (9.9 \times 10^{-8} \Omega \mathrm{m}) \times (8 \times 0.025 \mathrm{m}) \div 0.9 \times 10^{-7} \mathrm{m}^{-2}$	
	$R = 0.22 \ \Omega$	
(C)	Relationship and increase in R	
(i)	Attempts to substitute for $A = V/I$ in $R = \rho I/A$	1
	$R = \rho I^2 / V$	1
(ii)	Any attempt to relate original resistance of gauge to 2.5 2 (possibly × 8, cm or m)	1
	Relates this to resistance associated with increase in length	1
	Change in resistance = $1.76 \times 10^{-3} \Omega$	1
	OR	1
	Uses V=IA to find new area	1
	Uses this A with new length to find new R	1
	Change in resistance = $1.76 \times 10^{-3} \Omega$	
		1
	[if candidate assumes A constant and finds new R and ΔR = 0.001 $\Omega,$ score 1 mark]	
	Example of answer	

	New $R = (\frac{2.51^2}{2.5^2} \times 0.22) - 0.22$ $\Delta R = 1.76 \times 10^{-3} \Omega$	
(d)	Zigzag pattern	
	Each section of wire increases in length/gives a longer total length/long wire in small space	1
	Small change in length of gauge leads to larger change in resistance	1
	Total for question	13