1	$v^2 = 2 \times 9.8 \times 10$	M1	Using $v^2 = u^2 + 2as$ with $u = 0$
	$v = 14 \mathrm{ms^{-1}}$	A1	
	speed = $\sqrt{(7^2 + 14^2)}$ 15.7 or $7\sqrt{5}$ ms ⁻¹	M1	Method to find speed using their "v"
		A1	
	$\tan^{-1}(14/7)$ or $\tan^{-1}(7/14)$	M1	Method to find angle using their "v"
	63.4° to the horizontal	A1 6	26.6° to vertical
			6

2	(i)	$(6\sin\Pi/2) \div (\Pi/2)$	M1	Use of correct formula
		3.82	A1 2	AG
	(ii)	8d = 3(6-3.82) + 5x9.82 or $8x = \pm \{3(-3.82) + 5x3.82\}$ d = 6.95 or 6.96 or $x = +/-0.955\tan \theta = 0.96/6$	M1 A1 A1 M1	Method to find centre of mass Attempt to find the required angle
		$\theta = 9^{\circ}$	A1 5	7

3 (i)	$D = 128\ 000/80\ (= 1600)$ $k(80)^{2} = 128\ 000/80$ $k = \frac{1}{4}$ $R = 900\ N$ FT	B1 M1 A1 A1 B1	5	Driving force = resistance FT on their k (R = 3600k)
(ii)	D = $128\ 000\ /\ 60\ (= 2133\frac{1}{3})$ $2000\ x\ 9.8\ x\ sin2^\circ$ $6400/3-900-2000\ x\ 9.8\ x\ sin2^\circ = 2000a$ $a = 0.275\ m\ s^{-2}$	B1 B1 M1 A1	4	4 terms required 9

4	(i)	$4T\cos 20^{\circ} = 5 \text{ x g x } 2.5$	M1 A1	Using moments; allow sin/cos mix Allow with omission of g
		T = 32.6 N	A1 3	Allow with offission of g
	(ii)	X = Tsin20°	M1	allow sin/cos mix
	(11)	X = 13.11 FT	A1	FT their T
		$Y + T\cos 20^{\circ} = 5 x g$	M1	
		or $2.5Y = 1.5 \times T\cos 20$ or $4Y = 1.5 \times 5g$		
		Y = 18.4 FT	A1	FT their T, but not from omission of
		$R = \sqrt{(X^2 + Y^2)} \text{ or } \tan^{-1}(Y/X)$ or $\tan^{-1}(X/Y)$	M1	$ \begin{cases} g \\ X \neq 0, Y \neq 0 \end{cases} $
		R = 21.5 N	A1	
		$\theta = 58.8^{\circ}$ above the horizontal	A1 7	or 31.2° to left of vertical
				10

5	(i)	$T\cos 45^{\circ} + R\sin 45^{\circ} = mg$	*M1 A1	3 terms
		$T\sin 45^{\circ} - R\cos 45^{\circ} = m \sin 45^{\circ} \omega^{2}$	*M1 A1	3 terms; $a = r \omega^2$
		$2T = \sqrt{2}mg + ml\omega^{2}$ $T = m/2(\sqrt{2}g + l\omega^{2})$	Dep*M1 A1 6	Method to eliminate R AG www
		1 – 111/2(v2g + 1w)	AI U	AG www
	(ii)	R = 0	B1	may be implied
		$2R = \sqrt{2}mg - ml\omega^2$ or $T\cos 45^\circ = mg$	B1	
		or $T = ml\omega^2$		
		Solve to find ω	M1	
		$\omega = 4.16 \text{ rad s}^{-1}$	A1 4	10

6	(i)	2mu = 2mv + 3mv	M1	Conservation of momentum
		v=2/5 u	A1 A1 3	Must be $v =$
	(ii)	e = (3v - v) / u e = 4/5	M1 A1 2	Using restitution AG
	(iii)	Initial K.E. = $9mv^2 / 2 = 18mu^2 / 25$ Final K.E. = $9mv^2 / 8 = 9mu^2 / 50$ $\frac{1}{2}m(V)^2$ = Final K.E. V = 3u / 5	B1 FT B1 FT M1 A1 4	FT on their v from (i) FT on their v from (i) AG
	(iv)	$4mu / 5 - 3mu / 5 = 2mx + my$ $u / 5 = 2x + y$ $e = 4/5 = (y - x) / u$ $4u = 5y - 5x$ solving 2 relevant equations $x = -u/5 \ y = 3u/5$ $y = 3u/5$ away from wall (x) + towards wall (y)	M1 A1 FT M1 FT A1 M1 A1 A1 A1	Conservation of momentum FT on their v from (i); aef Using restitution FT on their v from (i); aef both 17

4/29	Mark Scr	ieme	June 2010
7 (i)	R = 0.2 x 9.8 x cos30° (= 1.70) F = 0.1 x 9.8 x cos30° (= 0.849) FT $\frac{1}{2}$ x 0.2 x 11 ² - $\frac{1}{2}$ x 0.2 v ² = 0.2 x 9.8 x 5sin30 + 5 x 0.849 v = 5.44 m s ⁻¹	B1 B1 M1 A1 A1 A1 6	FT on their R, but not R =0.2g Use of conservation of energy AG
Or last 4 marks of (i)	F + 0.2gsin30 = \pm 0.2a a = \pm 9.1 v ² = 11 ² + 2 x a x 5 v = 5.44 m s ⁻¹	M1 A1 M1 A1	Use of N2L, 3 terms Complete method to find v
(ii)	t = $5\cos 30^{\circ}/5.44\cos 30^{\circ}$ t = 0.919 s u = $5.44\sin 30^{\circ}$ (= 2.72) s = $2.72 \times 0.919 - 4.9 \times 0.919^{2}$ s = -1.6 (or better) Ht drop to $C = 5\sin 30^{\circ} = 2.5$ m Ball does not hit the roof	M1 A1 B1 M1 A1 B1 A1 7	time to lateral position over C Ht dropped
Or first 5 marks of (ii)	$y = x \tan \theta - g x^{2} \sec^{2} \theta / 2 V^{2}$ substitute values $V = 5.44 \theta = 30^{\circ} x = 5 \cos 30^{\circ}$ $y = 2.5 - 9.8 \times 25 \times 3 / 4 \times 4 / 3 / (2 \times 5.44^{2})$ $y = -1.6 \text{ (or better)}$	B1 M1 A1 A1	all 3 correct
OR (ii)	$u = 5.44\sin 30^{\circ} (= 2.72)$ $-2.5 = 5.44\sin 30t - 4.9t^{2}$ $t = 1.04$ $x = 5.44\cos 30 \times 1.04 = 4.9 \text{ (or better)}$ Horizontal distance from B to C = $5\cos 30 = 4.3 \text{ (or better)}$ Ball does not hit the roof	B1 M1 A1 A1 A1 A1	aef time to position level with AC
OR (ii)	y = xtan θ - gx ² sec ² θ /2V ² substitute values -2.5 = 0.577x - 0.221x ² Attempt to solve quadratic for x x = 4.9 (or better) Horizontal distance from B to C = $5\cos 30 = 4.3$ (or better) Ball does not hit the roof	B1 M1 A1 M1 A1 B1 A1 7	aef
OR (ii)	$u = 5.44\sin 30^{\circ} = 2.72$ $-2.5 = 5.44\sin 30t - 4.9t^{2}$ $t = 1.0 \text{ (or better)}$ $T = 5\cos 30^{\circ}/5.44\cos 30^{\circ}$ $T = 0.92 \text{ (or better)}$ Ball does not hit the roof	B1 M1 A1 A1 M1 A1 A1	aef time to position level with AC time to lateral position over C

OR (ii)	Attempt at equation of trajectory $y = 0.577x - 0.221x^2$ y = -0.577x Solving their quadratic and linear equations to get at least x or y	M1 A1 B1		Equation of BC
	x = 5.2 (or better) or $y = -3.0$ (or better) Horizontal distance from B to C = $5\cos 30 = 4.3$ (or better) Or Ht drop to $C = 5\sin 30^\circ = 2.5$ Ball does not hit the roof	A1 B1 A1	7	Must be the one needed for comparison
OR (ii)	Attempt at equation of trajectory $y = 0.577x - 0.221x^2$ $y = -0.577x$ Solving their quadratic and linear equations $x = 5.2$ (or better) and $y = -3.0$ (or better) Distance = 6.0 (or better)	M1 A1 B1 M1 A1		Distance from B to point of
	Ball does not hit the roof	A1	7	intersection