

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6690/01)

June 2009 6690 Decision Mathematics D2 Mark Scheme

Question Number	Scheme		
Q1 (a) (b)	There are more tasks than people. Adds a row of zeros	B1 B1	(1) (1)
(c)	$\begin{bmatrix} 15 & 11 & 14 & 12 \\ 13 & 8 & 17 & 13 \\ 14 & 9 & 13 & 15 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 3 & 1 \\ 5 & 0 & 9 & 5 \\ 5 & 0 & 4 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}; \rightarrow \begin{bmatrix} 3 & 0 & 2 & 0 \\ 4 & 0 & 8 & 4 \\ 4 & 0 & 3 & 5 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ Either $\begin{bmatrix} 3 & 3 & 2 & 0 \\ 1 & 0 & 5 & 1 \\ 1 & 0 & 0 & 2 \\ 0 & 4 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$	B1;M	41A1
	Or $\begin{bmatrix} 2 & 0 & 6 & 4 \\ 2 & 0 & 1 & 5 \\ 0 & 3 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 5 & 3 \\ 1 & 0 & 0 & 4 \\ 0 & 4 & 0 & 2 \end{bmatrix}$		
(h)	J-4, M-2, R-3, (D-1)	A1	(6)
(4)	Minimum cost is (£)33.	B1	(1)
			[9]

Question Number	Scheme	Mar	ks
Q2 (a)	In the classical problem each vertex must be visited only once. In the practical problem each vertex must be visited at least once.	B2, 1,	0 (2)
(b)	A F D B E C A {1 4 6 3 5 2 } 21 + 38 + 58 + 36 + 70 + 34 = 257	M1 A1 A1	(3)
(C)	257 is the better upper bound, it is lower.	B1ft	(1)
(d)	R.M.S.T. C 34 A 21 F 38 D 67 E	M1 A1	
	Lower bound is $160 + 36 + 58 = 254$	M1A1 (4)
(e)	Better lower bound is 254, it is higher	B1ft	
(f)	$254 < optimal \le 257$	B1	(2)
	 Notes: (a) 1B1: Generous, on the right lines bod gets B1 2B1: cao, clear answer. (b) 1M1:Nearest Neighbour each vertex visited once (condone lack of return to start) 1A1: Correct route cao – must return to start. 2A1: 257 cao (c) 1B1ft: ft their lowest. (d) 1M1: Finding correct RMST (maybe implicit) 160 sufficient 1A1: cao tree or 160. 2M1:Adding 2 least arcs to B, 36 and 58 only 2A1: 254 (e) 1B1ft: ft their highest (f) 1B1: cao 		[12]

Question Number	Scheme				
Q3 (a)	Row minima $\{-5, -4, -2\}$ row maximin = -2 Column maxima $\{1, 6, 13\}$ col minimax = 1 $-2 \neq 1$ therefore not stable.	M1 A1 A1	(3)		
(b)	Column 1 dominates column 3, so column 3 can be deleted.	B1	(1)		
(c)	A plays 1A plays 2A plays 3B plays 15-12B plays 2-64-3	B1 B1	(2)		
(d)	Let B play row 1 with probability p and row 2 with probability (1-p) If A plays 1, B's expected winnings are $11p - 6$ If A plays 2, B's expected winnings are $4 - 5p$ If A plays 3, B's expected winnings are $5p - 3$	M1 A1			
	$ \begin{array}{c} 6 \\ 4 \\ $	M1 A1			
	$5p-3 = 4-5p$ $10p = 7$ $p = \frac{7}{10}$	M1			
	B should play 1 with a probability of 0.7 2 with a probability of 0.3 and never play 3	A1			
	The value of the game is 0.5 to B	A1	(7) [13]		

Question Number	Scheme	Mark	S
Q4 (a)	Value of cut $C_1 = 34$; Value of cut $C_2 = 45$	B1; B1	(2)
(b)	S B F G T or S B F E T – value 2 Maximum flow = 28	M1 A1 A1=B1	(3)
	Notes: (a) 1B1: cao 2B1: cao (b) 1M1: feasible flow-augmenting route and a value stated 1A1: a correct flow-augmenting route and value 1A1= B1: cao		[5]
Q5 (a)		D2 1 0	
	x = 0, y = 0, z = 2	B2,1,0	(2)
(b)	$P - 2x - 4y + \frac{5}{4}r = 10$	M1 A1	(2)
			[4]
	 Notes: (a) 1B1: Any 2 out of 3 values correct 2B1: All 3 values correct. (b) 1M1: One equal sign, modulus of coefficients correct. All the right ingredients. 1A1: cao – condone terms of zero coefficient 		

Question Number	Scheme		
Q6 (a)	The supply is equal to the demand	B1	(1)
(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	(1)
(c)	ABCX16- θ 6+ θ Y9- θ 8+ θ Z θ 15- θ Value of θ = 9, exiting cell is YB	M1 A1 A1	(3)
(d)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1	
	XC = 7 - 0 - 20 = -13 YA = 16 + 5 - 17 = 4 YB = 12 + 5 - 8 = 9 ZB = 10 + 11 - 8 = 13	A1	(3)
	ABCX7- θ 15Y17Z9+ θ 6- θ Value of θ = 6, entering cell XC, exiting cell ZC	M1 A1	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A1 B1	(3) (1)
			[12]

Question Number				Scheme			Marks
Q7 (a)	Stage	State	Action	Dest.	Value		
		(in £1000s)	(in £1000s)	(in £1000s)	(in £1000s)	-	
	1	230	250	0	300*	-	
	1	200	200	0	180*		
		100	100	0	120*	-	
		50	50	0	60*		
		0	0	0	0*		
		250	280	0	200 + 0 = 280		
			200	50	235 + 60 = 295		
			150	100	190 + 120 = 310*		
			100	150	125 + 180 = 305		1M1 A1
			50	200	65 + 240 = 305		
			0	250	0 + 300 = 300		
	2	200	200	0	235 + 0 = 235		
			150	50	190 + 60 = 250*		
			100	100	125 + 120 = 245		A1
			50	150	65 + 180 = 245	_	
			0	200	0.0 + 100 = 240		
		150	150	200	0 + 240 - 240		0141
		150	130	0	190 + 0 = 190*		2M1
			100	50	125 + 60 = 185	_	۸1
			50	100	65 + 120 = 185		AI
			0	150	0 + 180 = 180		
		100	100	0	125 + 0 = 125*		A1
			50	50	65 + 60 = 125*	-	
			0	100	0 + 120 = 120		
		50	50	0	65 + 0 = 65*		
			0	50	0 + 60 = 60		
		0	0	0	0 + 0 = 0*		3M1
	3	250	250	0	300 + 0 = 300		Alft
			200	50	230 + 65 = 295		
			150	100	170 + 125 = 295		
			100	150	110 + 190 = 300		
			50	200	55 + 250 = 305	-	
			0	250	0 + 310 = 310*		
	Maxim	um income £31	0 000 Scheme Invest (in £10	1 2 00s) 100 15	$\begin{array}{c c} 2 & 3 \\ 50 & 0 \end{array}$	-	B1 B1 (10)
(b)	Stage: State: Action:	Scheme being o Money availabl Amount choser	considered le to invest i to invest				B1 B1 B1 (3) [13]

Question Number	Scheme			
Q8	E.g. Add 6 to make all elements positive $\begin{bmatrix} 4 & 14 & 5 \\ 13 & 10 & 3 \\ 7 & 1 & 10 \end{bmatrix}$	B1		
	Let Laura play 1, 2 and 3 with probabilities p_1 , p_2 and p_3 respectively Let V = value of game + 6	B1		
	e.g. Maximise P = V Subject to: $V - 4p_1 - 13p_2 - 7p_3 \le 0$ $V - 14p_1 - 10p_2 - p_3 \le 0$ $V - 5p_1 - 3p_2 - 10p_3 \le 0$ $p_1 + p_2 + p_3 \le 1$	B1 M1 A3,2ft,1ft ,0		
	$P_1 + P_2 + P_3 = 1$ $p_1 - p_2 + p_3 = 1$ $p_2 - p_3 > 0$	(7)		
	Notes: 1B1: Making all elements positive 2B1: Defining variables 3B1: Objective, cao word and function 1M1: At least one constraint in terms of their variables, must be going down columns. Accept = here. 1A1ft: ft their table. One constraint in V correct. 2A1ft: ft their table. Two constraints in V correct. 3A1: CAO all correct .	[7]		
	Alt using x_i method			
	Now additionally need: let $x_i = \frac{p_i}{v}$ for 2B1 minimise $(P) = x_1 + x_2 + x_3 = \frac{1}{v}$ subject to: $4x_1 + 13x_2 + 7x_3 \ge 1$			
	$14x_1 + 10x_2 + x_3 \ge 1$ $5x_1 + 3x_2 + 10x_2 \ge 1$			
	$3x_1 + 3x_2 + 10x_3 \ge 1$ $x_i \ge 0$			