## Mark Scheme (Results) Summer 2009

GCE

## GCE Mathematics (6690/ 01)

## 6690 Decision Mathematics D2

Mark Scheme


## edexcel




## edexcel

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| (a) <br> (b) | Value of cut $\mathrm{C}_{1}=34 ; \quad$ Value of cut $\mathrm{C}_{2}=45$ <br> SBF GT or S B F E T - value 2 <br> Maximum flow $=28$ <br> Notes: <br> (a) 1B1: cao 2B1: cao <br> (b) 1M1: feasible flow-augmenting route and a value stated 1A1: a correct flow-augmenting route and value $1 \mathrm{~A} 1=\mathrm{B} 1$ : cao | B1; B1 <br> (2) <br> M1 A1 <br> A1=B1 <br> (3) <br> [5] |
| Q5 <br> (a) <br> (b) | $\begin{aligned} & x=0, y=0, z=2 \\ & P-2 x-4 y+\frac{5}{4} r=10 \end{aligned}$ <br> Notes: <br> (a) 1B1: Any 2 out of 3 values correct <br> 2B1: All 3 values correct. <br> (b) 1M1: One equal sign, modulus of coefficients correct. All the right ingredients. <br> 1A1: cao - condone terms of zero coefficient | B2,1,0 <br> (2) <br> M1 A1 <br> (2) <br> [4] |

edexcel


| Question Number | Scheme |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Q7 (a) |  |  |  |  |  |
|  | Stage | $\begin{gathered} \text { State } \\ \text { (in £1000s) } \end{gathered}$ | $\begin{gathered} \text { Action } \\ \text { (in } £ 1000 \text { s) } \end{gathered}$ | $\begin{gathered} \text { Dest. } \\ \text { (in } £ 1000 \text { ) } \end{gathered}$ | $\begin{gathered} \text { Value } \\ \text { (in } £ 1000 \mathrm{~s} \text { ) } \end{gathered}$ |
|  |  | 250 | 250 | 0 | 300* |
|  | 1 | 200 | 200 | 0 | 240* |
|  |  | 150 | 150 | 0 | 180* |
|  |  | 100 | 100 | 0 | 120* |
|  |  | 50 | 50 | 0 | 60* |
|  |  | 0 | 0 | 0 | 0* |
|  |  | 250 | 280 | 0 | $200+0=280$ |
|  |  |  | 200 | 50 | $235+60=295$ |
|  |  |  | 150 | 100 | $190+120=310^{*}$ |
|  |  |  | 100 | 150 | $125+180=305$ |
|  |  |  | 50 | 200 | $65+240=305$ |
|  |  |  | 0 | 250 | $0 \quad+300=300$ |
|  | 2 | 200 | 200 | 0 | $235+0=235$ |
|  |  |  | 150 | 50 | $190+60=250 *$ |
|  |  |  | 100 | 100 | $125+120=245$ |
|  |  |  | 50 | 150 | $65+180=245$ |
|  |  |  | 0 | 200 | $0+240=240$ |
|  |  | 150 | 150 | 0 | $190+0=190^{*}$ |
|  |  |  | 100 | 50 | $125+60=185$ |
|  |  |  | 50 | 100 | $65+120=185$ |
|  |  |  | 0 | 150 | $0+180=180$ |
|  |  | 100 | 100 | 0 | $125+0=125^{*}$ |
|  |  |  | 50 | 50 | $65+60=125^{*}$ |
|  |  |  | 0 | 100 | $0+120=120$ |
|  |  | 50 | 50 | 0 | $65+0=65^{*}$ |
|  |  |  | 0 | 50 | $0+60=60$ |
|  |  | 0 | 0 | 0 | $0+0=0 *$ |
|  | 3 | 250 | 250 | 0 | $300+0=300$ |
|  |  |  | 200 | 50 | $230+65=295$ |
|  |  |  | 150 | 100 | $170+125=295$ |
|  |  |  | 100 | 150 | $110+190=300$ |
|  |  |  | 50 | 200 | $55+250=305$ |
|  |  |  | 0 | 250 | $0+310=310^{*}$ |

1M1 A1

A1

2M1
A1

A1

3M1
A1ft

B1
B1
(10)
(3)
[13]

| Question <br> Number | Scheme |
| :--- | :---: |
| Q8 | E.g. Add 6 to make all elements positive $\left[\begin{array}{ccc}4 & 14 & 5 \\ 13 & 10 & 3 \\ 7 & 1 & 10\end{array}\right]$ |

Marks

B1

B1
Let $V=$ value of game +6
e.g.

Maximise $P=V$
Subject to:
$V-4 p_{1}-13 p_{2}-7 p_{3} \leq 0$
$V-14 p_{1}-10 p_{2}-p_{3} \leq 0$
$V-5 p_{1}-3 p_{2}-10 p_{3} \leq 0$

$$
\begin{array}{r}
p_{1}+p_{2}+p_{3} \leq 1 \\
p_{1}, p_{2}, p_{3} \geq 0 \tag{7}
\end{array}
$$

## Notes:

1B1: Making all elements positive
2B1: Defining variables
3B1: Objective, cao word and function
1M1: At least one constraint in terms of their variables, must be going down columns. Accept $=$ here .
1A1ft: ft their table. One constraint in V correct.
2A1ft: ft their table. Two constraints in V correct.
3A1: CAO all correct .

## Alt using $X_{i}$ method

Now additionally need: let $x_{i}=\frac{p_{i}}{v}$ for 2B1 $\operatorname{minimise}(P)=x_{1}+x_{2}+x_{3}=\frac{1}{v}$
subject to:

$$
\begin{aligned}
4 x_{1}+13 x_{2}+7 x_{3} & \geq 1 \\
14 x_{1}+10 x_{2}+x_{3} & \geq 1 \\
5 x_{1}+3 x_{2}+10 x_{3} & \geq 1 \\
x_{i} & \geq 0
\end{aligned}
$$

