

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Statistics 3 (6691/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code UA040135 All the material in this publication is copyright © Pearson Education Ltd 2014

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- C or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
1(a)	(This is a sample where) every (possible) sample (of size <i>n</i>) has an equal chance of being chosen.	B1 (1)
(b)	'When it is impossible to provide a sampling frame ' or a correct example with an indication	(1) B1
	of sampling frame being impossible.	
		(1)
(c)(i)	A list/register of all the students.	B1
(ii)	Number the students (from 0 to 74, 1 to 75 etc.)	B1
	Using the random no. table read off the nos. and identify or select the students allocated	B1
	those nos.	
		(3)
		Total 5
	Notes	
(a)	Require all / each / every etc sample and same/equal etc chance / probability etc for B1	
(b)	Require impossible / no / doesn't exist etc and sampling frame for B1	
(c)(i)	Require list/register etc and all/every/75 etc students for B1	
	List of 8 students is B0	
(ii)	First B1 accept 'in the corresponding position' o.e. if numbering omitted	
	Second B1 require both for mark.	

Question Number	Scheme	Marks	
2a(i)	Only contains known data / function of data only / no population parameters	B1	
	therefore it is a statistic	B1d	
(ii)(iii)	(ii) and (iii) contain unknown parameters / population parameters / μ and / or σ	B1	
	therefore it is not a statistic .	B1d	
		(4	4)
(b)	$(\mathrm{E}(\frac{3X_1 - X_{20}}{2}) = \frac{3\mu - \mu}{2} =) \ \mu$	B1	
	$Var(\frac{3X_1 - X_{20}}{2}) = \frac{9\sigma^2 + \sigma^2}{2^2}$	M1	
	$=\frac{5\sigma^2}{2}$	A1	
	2	(3	3)
		Total 7	
	Notes		
(a)(i)	First B1 for known / no unknowns o.e. in (i)		
	Second B1 dependent on first B1 for 'Yes' / is a statistic o.e. in (i)		
	Third B1 for unknowns o.e. in both (ii) and (iii)		
	Fourth B1 dependent on third B1 for 'No' / not a statistic o.e. in both (ii) and (ii)		
(b)	B1 for μ		
	M1 for some squaring on numerator or denominator and must add on numerator		
	A1 for $\frac{5\sigma^2}{2}$ o.e.		

Question Number				Scheme			Marks				
3	Happiness										
			Not happy	Fairly happy							
		Female	13.51	41.77		happy .71	M1				
	Gender	Male	8.49	26.23		.29	A1				
	H_0 : Happiness and gender are independent/ not associated										
				endent/ associated	<u> </u>		B1				
	0		Ε	(0-E)) ²	$\frac{O^2}{F}$	dM1				
	9		13.51	<i>E</i> 1.508	Ľ						
			41.77	0.0361		44.264					
	34		30.71	0.351		37.637					
	13		8.49	2.402		19.915					
	25		26.23	0.0575		23.829	A1				
	16		19.29	0.560		13.274					
	$\sum \frac{(O-I)}{r}$	$(E)^2 = 4.91$	or $\sum \frac{O^2}{N} - N =$	=144.91 - 140 = 4	.91		A1				
	$\sum \frac{(O-E)^2}{E} = 4.91 \text{ or } \sum \frac{O^2}{E} - N = 144.91 - 140 = 4.91$ v = (3-2)(2-1) = 2										
	$v = (3-2)(2-1) = 2$ $\sum \frac{(O-E)^2}{E} < 5.991$										
	4.91 < 5.9	M1									
	No associa	ation between	gender and hap	piness.			A1				
							(10				
		Total 1									
	1 st M1 for	r some use of	Row Total×Colum	Notes an Total. May be in	nplied by	v at least 1 c	orrect Ei				
	1 st M1 for some use of $\frac{Row Total \times Column Total}{Grand Total}$. May be implied by at least 1 correct <i>Ei</i> 1 st A1 awrt 13.5, 41.8, 30.7, 8.5, 26.2 and 19.3 Allow M1A0 for <i>Ei</i> rounded to integers										
	1 st B1 for	ce.									
	Use of "re										
	$2^{nd} dM1 for$	with their Ei									
	Dependen										
	2 nd A1 for										
	Allow true										
	3 rd A1 aw										
	2 nd B1 for 3 rd B1ft fo 3 rd M1 for										
	Contradic										
	Condone '	ess"									
	4th A1 for Condone 6		of connection	Condone "relationship" or "connection" here but not "correlation". e.g. "There is no evidence of a relationship between gender and happiness"							
	Condone '	"relationship"		hip between gende	r and haj	ppiness"					
	Condone ' e.g. "Ther	"relationship" e is no evider	nce of a relations	hip between gende e the wrong way ar	-						

Question Number	Scheme	Marks							
4	E(A) = E(B) + 4E(C) - 3E(D)								
	= 22	A1							
	$\operatorname{Var}(A) = \operatorname{Var}(B) + 16\operatorname{Var}(C) + 9\operatorname{Var}(D)$	M1							
	= 168.25	A1							
	P (A < 45) = P $\left(Z < \frac{45 - 22}{\sqrt{168.25}} \right)$ = P (Z < 1.773)	M1							
	= 0.9616 awrt 0.962	A1							
		(6)							
		Total 6							
	Notes								
	$1^{\text{st}} \text{ M1 for } E(4C) = 4E(C) \text{ and } - E(3D) = -3E(D)$								
	1 st A1 for 22 cao								
	2^{nd} M1 for use of Var $(aX) = a^2$ Var X and + their '9Var (D) '								
	2 nd A1 for 168.25 cao								
	3 rd M1 for standardising using their mean and their sd								
	3 rd A1 for awrt 0.962. NB Calculator gives 0.961899								

Question Number			Scl	neme						
5(a)	The seeds are independent / There are a fixed number of seeds in a row / There are only									
	two outcomes to the seed ge	rminatin	g – eithe	er it gern	ninates or	it does not	/ The probability			
	of a seed germinating is cons	tant								
(b)	$(0 \times 2) + (1 \times 6) + (2 \times 11) $	3×19)+	(4×25	$) + (5 \times 3)$	$(6 \times 1)^{-1}$	l6)+(7×9	9) _ 504			
		120	0×7							
							= 0.6 **			
(c)	p = 0.6 $q = 0.4$									
	$s = 120 \times 21q^5p^2 = 120 \times 21 \times 0.4^5 \times 0.6^2 = 9.29$									
	$t = 120 \times 35q^3 p^4 = 120 \times 35q^3 p^4$	$x 0.4^3 x$	$0.6^4 = 3$	4.84						
(d)	H_0 : A binomial distribution is a suitable model.									
	$H_{1:}$ A binomial distribution is not a suitable model.									
	Observed number of rows	19	19	25	32	25				
	Expected number of rows	11.55	23.22	34.84	31.35	19.04				
	$\frac{(O-E)^2}{E}$	4.81	0.77	2.78	0.013	1.87				
	$\frac{(O-E)^2}{E}$ $\frac{O^2}{E}$	31.26	15.55	17.94	32.66	32.83				
	y = 5 - 2 = 3 Critical value for $\chi^2 = 11.345$									
	$\sum \frac{(O-E)^2}{E} = 10.23$ or $\sum \frac{O^2}{E} - N = 130.23 - 120 = 10.23$									
	10.23 < 11.345 therefore	do not i								
	A binomial is a suitable	model.								

		(7)
		Total 13
	Notes	
(a)	Any two and at least one must have context. 2 correct, no context B1B0. Do not award B0B1.	
(b)	M1 require at least two correct terms in numerator and $/(120x7)$ or $/120$ then $/7$	
	A1 cso as given answer	
(c)	Cao for each B1	
(d)	1^{st} B1 for both hypotheses. B0 if they include 0.6 Condone $X \sim B(n,p)$ etc	
	1^{st} M1 for using some combined columns (<8)	
	2 nd B1ft follows from 'their no of columns' -2	
	3 rd B1ft follows from the degrees of freedom	
	2^{nd} M1 for attempting $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ with at least 2^{nd} (3 seeds) and 4^{th} (5 seeds) accurate	
	to 2sf	
	Contradictory statements score M0 e.g. "significant" do not reject H0	
	1 st A1 for awrt 10.2	
	2^{nd} A1 dependent on 2^{nd} M for a correct comment suggesting that binomial model is suitable. No follow through .	
	Condone mention of 0.6 here. Hypotheses wrong way round scores A0	

Marks

(2)

(2)

(2)

(7)

B1 B1

Alcso

M1

B1 B1

B1

M1

B1ft B1ft M1A1

A1

Question Number	Scheme	Marks
6(a)	$\overline{X} = \frac{1}{n} \left(X_1 + \ldots + X_n \right)$	
	$\mathbf{E}\left(\overline{X}\right) = \frac{1}{n} \mathbf{E}(X_1 + \ldots + X_n)$	
	$=\frac{1}{n}(E(X_1) + \ldots + E(X_n))$	
	$=\frac{1}{n}(\mu+\ldots+\mu)$	
	$=\frac{n\mu}{n}=\mu$	B1cso
		(1)
(b)	$\bar{x} = \frac{1}{5}(197 + 203 + 205 + 201 + 195)$	
	s = 200.2(g)	B1
	$s^{2} = \frac{1}{n-1} (\sum x^{2} - n\bar{x}^{2})$ or $\frac{n}{n-1} V \operatorname{ar} x$	M1
	$=\frac{1}{5-1}(200469-5(200.2^2))$	
	= 17.2	A1
		(3)
(c)	We require $2 \times 1.25 \ge$ Width of confidence interval	
	$2.5 \ge \frac{2 \times 1.96 \times 4.8}{\sqrt{n}}$ or $1.25 \ge \frac{1.96 \times 4.8}{\sqrt{n}}$ or $\frac{1.25}{\frac{4.8}{\sqrt{n}}} \ge 1.96$	M1B1
	$\sqrt{n} \ge \frac{2 \times 1.96 \times 4.8}{2.5} = 7.5264$	
	$n \ge 56.6(5)$	A1
	Minimum sample size is 57	A1
		(4)
		Total 8
	Notes	
(a)	B1 cso: require $E(\overline{X}) = \mu$ with at least 1 correct intermediate step and no incorrect working.	
(b)	B1 for 200.2 or $\frac{1001}{5}$	
	5 M1 for use of correct formula. Accept $\frac{1}{4}S_{xx} = \frac{1}{4} \times 68.8$	
	A1 for awrt 17.2 4^{-xx} 4	
(c)	M1 for use of any equivalent expression. Accept equality. Accept their <i>s</i> instead of 4.8	
	B1 for 1.96 seen with s.e.	
	1^{st} A1 for 56.6(5)	
	2^{nd} A1 for 57. Must follow from correct working e.g. $\sqrt{n} \le 7.5264$ resulting in $n = 57$ award	
	2 Al for 57. Must follow from correct working e.g. $\sqrt{n} \le 7.5264$ resulting in $n = 57$ award A0	

Question Number	Scheme	Mar	ks
7(a)	$z = \pm 3.2905$	B1	
	$\sigma = \frac{30}{3.2905}$	M1	
	$\sigma = 9.117 **$	A1cso	
(b)	1000	D1	(3)
(b)	H ₀ : $\mu = 1000$ H ₁ : $\mu < 1000$	B1	
	mean weight = 999.54	B1	
	$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{(999.54 - 1000)}{\frac{9.117}{\sqrt{10}}} = -0.160 \text{or} \frac{c - 1000}{\sqrt{83.12/10}} = -2.3263 \therefore \text{CR } c < 993.29$	M1A1	
	1% critical value = -2.3263	B1	
	-2.3263 < -0.160		
	Accept $H_0/$ not in critical region	dM1	
	There is no evidence that that the machine is delivering packets of mean weight less than 1 kg	A1ft	(7)
		Tot	al 10
	Notes		
(a)	M1 for 30/'their $ z $ '>1		
	A1 cso as given answer		
(b)	1 st B1 both hypotheses correct.		
	Accept 1kg in hypotheses if consistent units used in working usually either kg or g.		
	2 nd B1 999.54 (g) or 0.99954 (kg)		
	1 st M1 for standardising using their mean allow \pm , 1000 and $\frac{9.117}{\sqrt{10}}$ o.e. in kg		
	VIO		
	1 st A1 awrt -0.160 unless clearly using $ z $ (stated) then accept 0.160 or CR awrt 993		
	1 st A1 awrt -0.160 unless clearly using $ z $ (stated) then accept 0.160 or CR awrt 993 Condone -0.16 if fully correct expression seen.		
	Condone -0.16 if fully correct expression seen.		
	Condone -0.16 if fully correct expression seen. $3^{rd} B1 \pm 2.3263$ sign consistent with test statistic or $p = 0.4364 > 0.01$ NB $p = 0.5636 < 0.99$		
	Condone -0.16 if fully correct expression seen. $3^{rd} B1 \pm 2.3263$ sign consistent with test statistic or $p = 0.4364 > 0.01$ NB $p = 0.5636 < 0.99$ 2^{nd} dM1 dependent upon 1^{st} M for a correct statement linking their test statistic and their cv		
	Condone -0.16 if fully correct expression seen. $3^{rd} B1 \pm 2.3263$ sign consistent with test statistic or $p = 0.4364 > 0.01$ NB $p = 0.5636 < 0.99$ 2^{nd} dM1 dependent upon 1^{st} M for a correct statement linking their test statistic and their cv Contradictory statements score M0 e.g. "significant, do not reject H ₀ "		

Question Number				Schei	me						Mar	ks
8(a)	r =										M1	
	$r = \frac{0.5435}{\sqrt{0.0632 \times 1957.5556}} = 0.840$										A1	
	- 0.040										AI	(2)
(b)	$H_0: \rho = 0 \ H_1: \rho > 0$										B1	(2)
	Critical value = 0.5822										B1	
	0.840 > 0.5822 There is e	evidence	to reject	H ₀							M1	
	There is evidence of a po				en a m	an's h	eight a	nd his	weigh	t.	Alft	
	1						U		0			(4)
(c)	Man	Α	В	C	D	Е	F	G	Н	Ι		
	Actual weight	1	2	7	3	4	5	8	6	9	B1	
	Peter's order	1	4	2	6	3	8	5	9	7	B1	
	d^2	0	4	25	9	1	9	9	9	4		
	$\sum d^2 = 70$										M1A1	
											dM1	
	$r_{s} = 1 - \frac{6\Sigma d^{2}}{n(n^{2}-1)}$ = 1 - $\frac{6\times70}{9(81-1)}$											
	$= 1 - \frac{6 \times 70}{9(81-1)}$											
	= 0.417										A1	
												(6)
(d)	$H_0: \rho = 0 \ H_1: \rho > 0$										B1	(0)
(0)	Critical value 0.600										B1	
	(0.417 < 0.600) There is	insufficie	ent evide	ence to	reiect	Ho.					M1	
	Peter does not have the a				•		ght, fro	om the	ir phot	ograph.	A1	
					- , -	5	5 ., .		I ···	0		(4)
											Та	tal 16

	Notes
(a)	M1 Clear use of $r = \frac{S_{xy}}{\sqrt{S_{yx}S_{yy}}}$
	A1 0.840 cao
(b)	1 st B1 for both hypotheses in terms of ρ , one tail H ₁ must be compatible with their r
	Hypotheses just in words e.g. "no correlation" score B0
	2 nd B1 for 0.5822 cao
	M1 for a statement comparing 'their r' with 'their cv'
	A1 for a correct contextualised comment. Must mention positive correlation, be carrying out a 1-tailed test and mention height and weight.
	Follow through their r and their cv (provided their $ cv < 1$ and their $ r < 1$)
(c)	1^{st} B1 for attempt to rank actual weight / Peter's order with at least 4 correct
	2^{nd} B1 for correct rankings for both (one or both may be reversed)
	1 st M1 for use of $\sum d^2$ with at least 4 values correct and attempt to add
	1 st A1 for 70 or 170 with reversed rankings
	2^{nd} dM1 for use of the correct formula, follow through their $\sum d^2$. Dependent on 1^{st} M1
	If answer is not correct, a correct expression is required.
	2^{nd} A1 for awrt 0.417 or $\frac{5}{12}$
(d)	1 st B1 for both hypotheses in terms of ρ or ρ_s One tail H ₁ must be compatible with their
	ranking
	Hypotheses just in words e.g. "no correlation" score B0
	2 nd B1 for cv of 0.6(00) cao
	Their cv must be compatible with their H1 which may be in words
	M1 for statement comparing 'their r' with 'their cv'
	A1 for a correct contextualised comment. Must mention Peter and Men.
	Follow through their r and their cv (provided their $ cv < 1$ and their $ r_s < 1$)

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE