Question Number	Scheme	Marks								
Q1	$H_0: \mu = 80, H_1: \mu > 80$	B1,B1								
	$z = \frac{83 - 80}{15} = 2$	M1A1								
	$\frac{10}{\sqrt{100}}$									
	2 > 1.6449 (accept 1.645 or better) Reject H ₀ or significant result or in the critical region	B1 M1								
	Managing director's claim is supported.	A1 7								
	1 st B1 for H ₀ . They must use μ not x, p, λ or \overline{x} etc 2 nd B1 for H ₁ (must be > 80). Same rules about μ									
	1 st M1 for attempt at standardising using 83, 80 and $\frac{15}{\sqrt{100}}$. Can accept <u>+</u> .									
	May be implied by $z = \pm 2$ 1 st A1 for + 2 only									
	$ \begin{array}{ccc} 3^{rd} B1 & \text{for } \pm 1.6449 \text{ seen (or probability of } 0.0228 \text{ or better}) \\ 2^{nd} M1 & \text{for a correct statement about "significance" or rejecting } H_0(\text{or } H_1) \text{ based on the value} \end{array} $									
	and their 1.6449 (provided it is a recognizable critical value from normal tables) <u>o</u> their probability (< 0.5) and significance level of 0.05. Condone their probability > 0.5 compared with 0.95 for the 2 nd M1 2 nd A1 for a correct contextualised comment. Must mention "director" and "claim" or "ti									
	and "use of Internet". No follow through.									
2 nd M1A1	If no comparison or statement is made but a correct contextualised comment is given the M1 can be implied.									
	If a comparison is made it must be <u>compatible</u> with statement otherwise M0 e.g. comparing 0.0228 with 1.6449 is M0 or comparing probability 0.9772 with 0.05 is M0 comparing -2 with - 1.6449 is OK provided a correct statement accompanies it condone -2 >-1.6449 provided their statement correctly rejects H ₀ .									
Critical Region	They may find a critical region for \overline{X} : $\overline{X} > 80 + \frac{15}{\sqrt{100}} \times 1.6449 = a \text{ wrt } 82.5$;								
	1 st M1 for $80 + \frac{15}{\sqrt{100}} \times (z \text{ value})$									
	3^{rd} B1 for 1.645 or better 1^{st} A1 for awrt 82.5									
	The rest of the marks are as per the scheme.									

Question Number	Scheme	Marks
02	$[P \sim N(90.9) \text{ and } J \sim N(91.12)]$	
(a)	$(J-P) \sim N(1,21)$	M1, A1
	P(J < P) = P(J - P < 0)	
	$= \mathbf{P}\left(Z < \frac{0-1}{\sqrt{21}}\right)$	dM1
	= P(Z < -0.2182)	
	=1-0.5871=0.4129 awrt (0.413 ~ 0.414) calculator (0.4136)	A1 (4)
(b)	$X = (J_1 + J_2 + \dots + J_{60}) - (P_1 + P_2 + \dots + P_{60})$	M1
	$E(X) = 60 \times 91 - 60 \times 90 = 60$ [stated as $E(X) = 60$ or $X \sim N(60,)$]	B1
	$Var(X) = 60 \times 9 + 60 \times 12 = 1260$	A1
	$P(X > 120) = P\left(Z > \frac{120 - 60}{\sqrt{1260}}\right)$	M1
	= P(Z > 1.69030)	
	=1-0.9545=0.0455 awrt (0.0455)	Al (5)
		(5) 9
(a)	1 st M1 for attempting $J - P$ and $E(J - P)$ or $P - J$ and $E(P - J)$	
	1 st A1 for variance of 21 (Accept 9 + 12). Ignore any slip in μ here.	1 1
	2^{m} dM1 for attempting the correct probability and standardising with their mean an This mark is dependent on previous M so if $L = P(\text{ or } P = A)$ is not being us	d Sd. ed score M0
	If their method is not crystal clear then they must be attempting $P(Z < -ve y)$	value) or
	P(Z > +ve value) i.e. their probability <u>after</u> standardisation should lead to a	n prob. < 0.5
	so e.g. $P(J - P < 0)$ leading to 0.5871 is M0A0 unless the M1 is clearly ear	ned.
	2 ⁻⁴ A1 for awrt 0.413 or 0.414	
	The first 3 marks may be implied by a correct answer	
(b)	1^{st} M1 for a clear attempt to identify a correct form for X. This may be implied by variance of 1260	y correct
	B1 for $E(X) = 60$. Can be awarded even if they are using $X = 60J - 60P$. Allo	w P - J and
	1 st A1 for a correct variance. If 1260 is given the M1 is scored by implication.	
	2 nd M1 for attempting a correct probability and standardising with 120 and their 6 If the answer is incorrect a full expression must be seen following through	0 and 1260
	(120 - their 60)	20 - 60
	for M1 e.g. P $\left(Z > \frac{120}{\sqrt{\text{their variance}}}\right)$. If using -60, should get P $\left(Z < \frac{1}{\sqrt{\text{their variance}}}\right)$	ir variance
Use of		
means		
	Attempt to use $J - P$ for 1 st M1, $E(J - P) = 1$ for B1 and $Var(J - P) = 0$ Then 2 nd M1 for standardisation with 2, and their 1 and 0.35	0.35 tor A1

WST03/01: Statistics S3 Question Number Marks Scheme $X \sim N(w, 0.5^2)$ Q3 (a) $E \sim N(0, 0.5^2)$ or $P(|X-w| < 0.6) = P(|Z| < \frac{0.6}{0.5})$ $P(|E| < 0.6) = P(|Z| < \frac{0.6}{0.5})$ or M1 = P(|Z| < 1.2) $= 2 \times 0.8849 - 1 = 0.7698$ awrt 0.770 A1 (2)(b) $\overline{X} \sim N\left(w, \frac{0.5^2}{16}\right)$ $\overline{E} \sim N\left(0, \frac{1}{64}\right)$ or M1 $P\left(\left|\overline{E}\right| < 0.3\right) = P\left(\left|Z\right| < \frac{0.3}{\frac{1}{8}}\right)$ or $P(|\bar{X} - w| < 0.3) = P(|Z| < \frac{0.3}{\frac{1}{2}})$ M1, A1 = P(|Z| < 2.4) $= 2 \times 0.9918 - 1 = 0.9836$ awrt 0.984 A1 (4)(C) $35.6 \pm 2.3263 \times \frac{1}{2}$ M1 B1 A1,A1 (35.3, 35.9)(4)10 (a) $1^{st} M1$ for identifying a correct probability (they must have the 0.6) and attempting to standardise. Need ||. This mark can be given for 0.8849 - 0.1151 seen as final answer. $1^{st} A1$ for awrt 0.770. NB an answer of 0.3849 or 0.8849 scores M0A0 (since it implies no ||) M1 may be implied by a correct answer for a correct attempt to define \overline{E} or \overline{X} but must attempt $\underline{\sigma}^2$. 1st M1 (b) Condone labelling as E or X This mark may be implied by standardisation in the next line. 2nd M1 for identifying a correct probability statement using \overline{E} or \overline{X} . Must have 0.3 and || $1^{st} A1$ for correct standardisation as printed or better 2nd A1 for awrt 0.984 The M marks may be implied by a correct answer. Sum of 16, 1st M1 for correct attempt at suitable sum distribution with correct variance (= $16 \times \frac{1}{4}$) not means 2^{nd} M1 for identifying a correct probability. Must have 4.8 and || for correct standardisation i.e. need to see $\frac{4.8}{\sqrt{4}}$ or better 1st A1 for $35.6 \pm z \times \frac{0.5}{\sqrt{16}}$ (C) M1 **B**1 for 2.3263 or better. Use of 2.33 will lose this mark but can still score $\frac{3}{4}$ $1^{st}\,A1$ for awrt 35.3 $2^{nd} A1$ for awrt 35.9

Question Number					Schem	e					Marl	ĸs
Q4 (a)		Distance rank	1	2	3	4	5	6	7]		
		Depth rank	1	2	4	3	6	7	5		M1	
		d	0	0	1	1	1	1	2		N/1	
		d^2	0	0	1	1	1	1	4]	IVI I	
	$\sum_{r_s} d^2 =$	$\sum d^2 = 8$ $r_s = 1 - \frac{6 \times 8}{3}$										
		$=\frac{6}{7}=0.857$	142						awrt ().857	A1	(6)
(b)	$H_0: \rho$	$= 0, H_1: \rho > 0$)								B1	Ň
	Critical	l value at 1%	level is	0.8929							B1	
	$r_{s} < 0.8$	3929 so not si	gnifican	t eviden	ce to reje	ect H_0 ,					M1	
	The researcher's claim is not correct (at 1% level).											(4)
	or there is insufficient evidence that water gets deeper further from inner bank.											()
	<u>or</u> no	(positive) con	rrelation	betweer	depth o	f water a	and dista	nce from	n inner b	ank		10
(a)	1 st M1 2 nd M1 3 rd M1	for an a for attem for attem	ttempt to the second s	o rank th for their d^2 (mustice)	e depths ranks. N st be usin	against /lust be ung ranks)	the dista ising ran)	nces ks.			<u> </u>	
	1 st A1	for sum o	of 8 (or 1	04 for r	everse ra	nking)						
	4 th M1	for use o	f the cor	rect forn	nula with	their \sum	d^2 . If	answer	is not co	rrect ai	n express	ion
	2 nd A1	is require for awrt -0.857)	ed. (<u>+</u>) 0.85'	7. Sign s	should co	orrespon	d to rank	ting (so	use of 10)4 shou	ıld get	
(b)	1 st B1	for both l	hypothe	ses in ter	ms of $ ho$, H ₁ mus	st be one	tail and	compati	ble wi	th their	
	2 nd B1	for cv of	0.8929	(accept :	<u>+</u>)							
	M1	for a corr	rect state	ement rel	ating the	eir r_s with	h their cy	v but cv	must be	such tl	nat cv <1	
	A1ft	for a corr "distance	rect cont	extualise	ed comm	ent. Mu	st menti er)"	on "rese	archer" a	and "cl	aim" <u>or</u>	
		Follow th	nrough t	heir r_s a	nd their	cv (prov	ided it is	cv <1)				
		Use of "a	associati	on" is A	.0	-						

Question Number	Scheme												
OF		Finances	Worse	Same	Better								
ζ	Income												
	Under £	15 000	10.54	10.54	12.92	34	N/1						
	£15 000	and above	20.46	20.46	25.08	66							
			31	31	38	100	AI						
	H_0 : State of finances and income are independent (not associated) H_1 : State of finances and income are not independent (associated)												
	$(Q_{1} - E_{1})^{2}$ Q_{2}^{2}												
	O_i	E_i	$\frac{(O_i - E_i)}{E}$	$\frac{O_i}{\Gamma}$									
	·		E_i	E_i									
	14	10.54	1.1358	18.59									
	11	10.54	0.0200	11.48			M1						
	9	12.92	1.1893	6.269									
	17	20.46	0.5851	14.12			A1						
	20	20.46	0.0103	19.55									
	29	25.08	0.6126	33.53									
	$\sum \frac{(O_i - E_i)}{E_i}$	A1											
	v = (3-1)	B1											
	cv is 5.991	B1											
	3.553 < 5.	M1											
	There is no	A1											
	1 st M1	for some us	se of $\frac{\text{Row To}}{\text{Gra}}$	tal×Col.Total	. May be imp	blied by correct E_i							
	1 st A1	for all expe	ected frequenc	ies correct									
	B1 for both hypotheses. Must mention "state" or "finances" and "income" at least once												
		Use of "rel	ationship" or '	"correlation"	or "connection	n"is B0							
	2^{nd} M1	for at least	two correct te	rms (as in 3 ^{ra}	or 4 th column)	or correct expression	s with their						
		E_i											
	2 nd A1 for all correct terms. May be implied by a correct answer.(2 dp or better-allow eg 1.13)												
	3 rd M1	for a correct	et statement lin	nking their tes	t statistic and	their cv. Must be χ^2	not normal.						
	4 th A1 for a correct comment in context - must mention "state" or "finances" and condone "relationship" or "connection" here but not "correlation". No fol e.g. "There is no evidence of a relationship between finances and income"												

Question Number	Scheme										Marks
Q6	Distance	nce from re of site 0-1 (m)		1	1-2	2-4	4-6	6-9	9-12		
	(m)			•	12	2 7	70	0.0	512		
	b-a		1	_	1	2	2	3	3		M1
	No of arte	2	2	15 1	44	<u>37</u>	52	58 1		Δ1	
	$P(a \le X)$	$\leq X < b$)		2	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{4}$		AI
	$228 \times P(a \le$	$28 \times P(a \le X < b) $ 19			19	38	38	57	57		A1
	Class	E_i	($\frac{O_i - E_i)^2}{E_i}$	$\frac{O}{E}$	$\frac{O_i^2}{E_i}$					
	0-1	22	19	$\frac{9}{19}$	= 0.4736	25.5	7				
	1-2	15	19	$\frac{16}{19}$	=0.8421	11.8	4				M1
	2-4	44	38	$\frac{36}{38}$	= 0.9473	50.9	94				
	4-6	37	38	$\frac{1}{38}$	= 0.0263	36.0	2				
	6-9	52	57 $\frac{25}{57}$		= 0.4385	47.4	3				A1
	9-12	58 57 1/57		$\frac{1}{57}$	= 0.0175	59.0	1				
	H_0 : <u>continuous uniform</u> distribution <u>is</u> a good fit H_1 : continuous uniform distribution is not a good fit										B1
	$\sum \frac{(O_i - E_i)^2}{E} = \frac{313}{114} = 2.75 \text{ or } \sum \frac{O_i^2}{E} - 228 = 230.745 228 = \text{ (awrt 2.75)}$									dM1A1	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										B1
											B1ft
	2.75<11.070	, insuff	ficient	evid	ence to reje	ect H ₀					M1
	Continuous	uniforn	n distri	butic	on is a suita	able mode	el				A1
											12
	1 st M1 fo	or calcu	lation	of at	least 3 wi	dths and a	attemptir	ng proportio	ons/probs.	or fo	r 1:2:3 ratio
	1 st A1 fc	en or corre	ct prol	hahil	ities						
	2^{nd} A1 fo	or all co	orrect e	expec	cted freque	ncies					
	2^{nd} M1 for	or attem	pting	<u>(</u> <i>O</i> -	$\left(\frac{-E}{E}\right)^2$ or $\frac{O}{E}$	$\frac{1}{2}$, at leas	t 3 corre	ect expression	ons or valu	les.	
	Follow through their E_i provided they are not all = 38 $3^{rd} A1$ for a correct set of calcs - 3^{rd} or 4^{th} column. (2 dp or better and allow e.g. 0.94) $3^{rd} dM1$ dependent on $2^{nd} M1$ for attempting a correct sum or calculation (must see at least 3 terms and +)										
											0.94)
											e at least 3
]	The first	st thre	e Ms	s and As c	an be imj	plied by	a test stati	stic of aw	r t 2. 7	75
	4^{μ} M1 for a correct statement based on their test statistic (> 1) and their cv (> 3.8) Contradictory statements score M0 a g "significant" do not roiget H										3)
	5^{th}A1 for a correct comment suggesting that continuous uniform model is suitable										e. No ft

Question Number	Scheme	Mark	(S						
Q7 (a)	Label full time staff 1-6000, part time staff 1-4000	M1							
	Use random numbers to select								
	Simple random sample of 120 full time staff and 80 part time staff	A1	(3)						
(b)	Enables estimation of statistics / errors for each strata <u>or</u> "reduce variability" <u>or</u> "more representative" <u>or</u> "reflects population structure" NOT "more accurate"								
(C)	$H_0: \mu_f = \mu_p, H_1: \mu_f \neq \mu_p (\text{accept } \mu_1, \mu_2)$	B1	I						
	s.e. $=\sqrt{\frac{21}{80} + \frac{19}{80}}$, $z = \frac{52 - 50}{\sqrt{\frac{21}{80} + \frac{19}{80}}} = (2\sqrt{2})$								
	= 2.828 (awrt 2.83)	A1	I						
	Two tailed critical value z = 2.5758 (or prob of awrt 0.002 (<0.005) or 0.004 (<0.01))	B1							
	[2.828 > 2.5758 so] significant evidence to reject H ₀	dM1							
	There is evidence of a difference in policy awareness between full time and part time	Alft							
(d)	staff Can use mean full time and mean part time	D1	(7)						
(u)	~ Normal	B1 B1	(2)						
(e)	Have assumed $s^2 = \sigma^2$ or variance of sample = variance of population								
(f)	2.53 < 2.5758, not significant <u>or</u> do not reject H ₀	M1							
	So there is insufficient evidence of a difference in mean awareness	Alft	(2)						
(g)	Training course has closed the gap between full time staff and part time staff's mean awareness of company policy.								
(a)	 1st M1 for attempt at labelling full-time and part-time staff. One set of correct numb 2nd M1 for mentioning use of random numbers 1st A1 for s.r.s. of 120 full-time and 80 part-time 	ers.							
(c)	1 st M1 for attempt at s.e condone one number wrong . NB correct s.e. = $\sqrt{\frac{1}{2}}$								
	2 nd M1 for using their s.e. in correct formula for test statistic. Must be $\frac{\pm (52-50)}{\sqrt{\frac{p}{a}+\frac{r}{s}}}$								
	$\sqrt[n]{q^{-1}s}$ 3^{rd} dM1 dep. on 2^{nd} M1 for a correct statement based on their normal cv and their tes 2^{nd} A1 for correct comment in context. Must mention "scores" or "policy awareness of "staff". Award A0 for a one-tailed comment. Allow ft								
(d)	1^{st} B1for mention of mean(s) or use of \overline{X} , provided \overline{X} clearly refers to full-time 2^{nd} B1for stating that distribution can be assumed normal e.g. "mean score of the test is normally distributed" gets B1B1								
(f)	M1 for correct statement (may be implied by correct contextualised comment) A1 for correct contextualised comment. Accept "no difference in mean scores".	Allow f	t						
(g)	B1 for correct comment in context that implies training was effective. This must be supported by their (c) and (f). Condone one-tailed comment he	ere.							