

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2013

GCE CHEMISTRY – CH5

SUMMER 2013 MARK SCHEME

Q.1	(a)	Name of any commercially/ industrially important chlorine containing compound e.g. (sodium) chlorate(I) as bleach/ (sodium) chlorate(V) as weedkiller/ aluminium chloride as catalyst in halogenation				
			- do not accept CFCs			
	(b)	(i)	$\mathcal{K}_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$	must be square brackets	[1]	
		(ii)	$K_{\rm c} = \frac{0.11^2}{3.11^2} = 1.25 \times 10^{-2}$	³ follow through error (ft)	[1]	
		(iii)	$K_{\rm c}$ has no units	ft	[1]	
		(iv)	when temperature increases K_c increases (1)			
		this means equilibrium has moved to RHS / increasing temperature favours endothermic reaction (1)				
			therefore ΔH for forward (mark only awarded if m		[3]	
	(c)	(i)	+2		[1]	
		(ii)	co-ordinate/ dative (cov	alent)	[1]	
		(iii)	pink is $[Co(H_2O)_6]^{2+}$ and	blue is $[CoCl_4]^{2-}(1)$		
			(ligand is) Cl⁻ (1)			
			(addition of HCl sends)	equilibrium to RHS (1)	[3]	
		(iv)	$[Co(H_2O)_6]^{2+}$ shown as c	octahedral [with attempt at 3D] (1)		
			$[CoCl_4]^{2-}$ shown as tetra	hedral/ square planar (1)	[2]	

Total [14]

Q.2	(a)	(i)	tangent drawn at t = 40 (1)			
			rate calculated 0.017 to 0.027 (igno	ore units) (1)	[2]	
		(ii)	as reaction proceeds less collisions	s (per unit time) occur	[1]	
	(b)	(i)	1 st order shown by:			
			calculation of rates at at least 2 co	ncentrations (1)		
			statement rate α concentration (1)			
			OR			
			constant half-life (1)			
			half-life is 24 minutes (1)		[2]	
		(ii)	rate = $k[N_2O_5]$ (1)		[1]	
		 (iii) k = rate (from (i))/ [N₂O₅] (from graph) (1) (mark correct numbers – no need to check evaluation) 				
			units = minutes ⁻¹ (1)	ft from (ii)	[2]	
(iv) (student A more likely rate determining step			· ·	t) reaction is 1^{st} order and 1 [N ₂ O ₅] invo	olved in [1]	
	(c)	correc	orrect curve starting at 100 kPa and becoming horizontal (1)			
	horizontal at 250 kPa (1)				[2]	
				Total	[11]	

- Q.3(a) an acid is a proton / H^+ donor[1](b) $pH = -log[H^+]$ / negative log of hydrogen ion concentration[1]
 - (c) a low pH corresponds to a high concentration of $H^{+}(1)$

a strong acid is totally dissociated whilst a weak acid is partially dissociated (1)

need to consider concentration (of acid solution) as well as strength of the acid (1)

a concentrated solution of a weak acid could have a lower pH than a dilute solution of a strong acid (1) [4]

QWC Accuracy of spelling, punctuation and grammar QWC [1]

(d) (i)
$$K_{a} = \frac{[HCOO^{-}][H^{+}]}{[HCOOH]}$$
 [1]

(ii)
$$1.75 \times 10^{-4} = \frac{x^2}{0.1}$$
 (1)
 $x = 4.183 \times 10^{-3}$ (1)
 $pH = 2.38$ (1) [3]

(ii) RCOOH
$$\rightleftharpoons$$
 RCOO⁻ + H⁺ and RCOONa \rightarrow RCOO⁻ + Na⁺ (1)

added H^+ removed by salt anion/ A^- + $\text{H}^+ \rightarrow \text{HA}$ (1)

added OH⁻ removed by acid/ OH⁻ + HA
$$\rightarrow$$
 A⁻ + H₂O (1) [3]

Total [15]

© WJEC CBAC Ltd.

[2]

Q.4 (a) diagram with labels to show

 H_2/H^+ shown in electrode (1)

platinum (in both electrodes) (1)

 $Fe^{2+}(aq)$ and $Fe^{3+}(aq)(1)$

high resistance voltmeter (1)

salt bridge (1)

gas at 1atm pressure, solutions of concentration 1 mol dm⁻³, temperature 298K (1)

- (b) (i) successive ionisation energies increase gradually/ the energies of the d orbitals are similar [1]
 - (ii) $1s^22s^22p^63s^23p^64s^23d^{10}/3d^{10}4s^2$ [1]
 - (iii) after 4s electrons lost 3d is full/ stable/ d electrons ionisation energy very high [1]

(c) (i) violet solution contains
$$V^{2+}(1)$$

SEP Zn²⁺/ Zn is more negative than VO $_3^-$ / VO²⁺ and VO²⁺/ V³⁺ and therefore

releases electrons/ VO_3^{-}/VO^{2+} and VO^{2+}/V^{3+} are more positive than

 Zn^{2+}/Zn and are stronger oxidising agents (1)

 V^{2+} cannot be reduced (to V) since SEP is more negative than Zn^{2+}/Zn (1) [3]

- (ii) 1.1V (ignore sign) [1]
- (iii) $Zn(s) \rightarrow Zn^{2+}(aq) + 2e / Zn(s) \rightleftharpoons Zn^{2+}(aq) + 2e$ with some indication of direction [1]
- (iv) if $Zn^{2+}(aq)$ concentration increased equilibrium moves to LHS (1)

so electrode potential becomes less negative (1)

(d)	(i)	2.74×10^{-3} (mol)	[1]
	(ii)	1.37×10^{-3} (mol)	[1]

(iii)
$$M_r KIO_3 = 214.1$$

moles KIO_3 = 0.978/ 214.1 = 4.57 \times 10 3 in 250 cm^3

$$4.57 \times 10^{-4} \text{ in } 25 \text{ cm}^3$$
 [1]

(iv)
$$1.37 \times 10^{-3}/4.57 \times 10^{-4} = 3 (1)$$

equation 1 is correct since 3 moles of iodine formed (mark awarded for reason) (1) [2]

Total [20]

Q.5

群尧咨询

(a)	(i)	atomisation of magnesium / vaporisation of magnesium	[1]	
	(ii)	increased ratio positive charge on nucleus: number of electrons	[1]	
	(iii)	is positive because the (negative) electron is repelled by negative species	[1]	
	(iv)	lattice enthalpy is -3835 (kJ mol ⁻¹) numerical value (1) negative sign (1)	[2]	
(b)	(i)	gases are more random/ have more disorder / move more freely and therefore hav higher entropy	rea [1]	
	(ii)	$\Delta S = 21.8 (JK^{-1}mol^{-1})$	[1]	
	(iii)	$\Delta G = \Delta H - T \Delta S (1) $ ft from (ii)		
		ΔG must be –ve if reaction to be spontaneous/ to calculate T make ΔG = 0 (1)		
		0 = 318000 – T 21.8 T = 14587/14600 (K) (1)	[3]	
(c)	f aqueous sodium hydroxide (1)			
	white	precipitate for all possible ions (1)		
	ss aqueous sodium hydroxide – precipitate dissolves for Pb^{2+} and Al^{3+} (1)			
	use of aqueous (potassium) iodide/ hydrochloric acid/ sulfuric acid / soluble chloride/ soluble sulfate (1)			
	result – yellow ppt for $Pb^{2+} + I^{-}$ and no ppt for AI^{3+} / white ppt for $Pb^{2+} + CI^{-}$ or SO_4^{2-}			
	and n	o ppt for Al ³⁺ [result for both needed] (1)	[5]	
	QWC	Corganisation of information clear and coherent (1)		
		Use of specialist vocabulary (1) QV	/C [2]	
(d)	(i)	diagram to show central AI, 4 Cl ⁻ and 4 shared pairs of electrons, all Cl outer electrons, dative pair identifiable	[1]	
	(ii)	chlorination of benzene (1) produces CI^{+} as electrophile (1)		
		OR gives ionic liquids (1) with low vapour pressure/ non-volatile/ do not evaporate	•	
		in use (1)		
		OR catalyst (1) in polymerisation of alkenes (1)	[2]	
		Tota	l [20]	

GCE CHEMISTRY MS - Summer 2013