更多咨询请登录

General Certificate of Education (A-level) January 2011

Mathematics

MPC3

(Specification 6360)

Pure Core 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Mark Scheme – General Certificate of Education (A-level) Mathematics – Pure Core 3 – January 2011

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3				()	Mathematics – Pule Cole 3 – January 2011
Q	Solution		Marks	Total	Comments
1 (a)	$\frac{dy}{dx} = k(x^{3} - 1)^{5}$ = 6 × 3x ² (x ³ - 1) ⁵		M1		Where k is an integer or function of x
	$=6 \times 3x^{2} (x^{3}-1)^{5}$	(ISW)	A1	2	
					But note
					$\frac{\mathrm{d}y}{\mathrm{d}x} = k\left(x^3 - 1\right)^5 + px^2 \qquad M0$
					$Or (u = x^3 - 1) (y = u^6)$
					$\frac{dy}{du} = 6u^5$ and $\frac{du}{dx} = 3x^2$ M1
					$= 6(x^3 - 1)^5 \times 3x^2$ A1
					Note $\frac{dy}{dx} = 6 \times 3x^2 (x^3 - 1)^5 + c \text{ scores } M1 \text{ A0}$ (penalise + c in differential once only in paper)
(b)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm x \times \frac{1}{x} \pm \ln x$		M1		Product rule attempted and differential of $\ln x$
	$= 1 + \ln x$	(ISW)	A1	2	
(ii)		PI	B1		Must have replaced ln e by 1 Condone $y = 2.72$ (AWRT)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + \ln e \ (=2)$		M1		Correct substitution into their $\frac{dy}{dx}$
					But must have scored M1 in (b)(i)
	y - e = 2(x - e) or $y = 2x - e$		A1	3	Must have replaced ln e by 1
		Total		7	

Mark Scheme – General Certificate of Education (A-level) Mathematics – Pure Core 3 – January 2011

MPC3 (cont) Mathematics – Pure Core 3 – January 2011
Q	Solution		Marks	Total	Comments
2 (a)	$f(x) = (x^2 - 4)\ln(x + 2) - 15$				Or reverse
	f(3.5) = -0.9		M		f(3.5) = 0.9 M1
	$ \begin{array}{c} f(3.5) = -0.9 \\ f(3.6) = 0.4 \end{array} \right\} $		M1		$ \begin{array}{c} f(3.5) = 0.9 \\ f(3.6) = -0.4 \end{array} \right\} M1 $
	Attempt at evaluating both f (3.5) a	and			But must see
	f (3.6)				$f(x) = 15 - (x^2 - 4) \ln(x + 2)$
					before A1 may be earned Condone
					f(3.5) < 0
					$\begin{cases} f(3.5) < 0 \\ f(3.6) > 0 \end{cases}$ Only if $f(x)$ defined M1
					Or
					$ \begin{array}{c} x = 3.5 \ y = 14.1 \ (<15) \\ x = 3.6 \ y = 15.4 \ (>15) \end{array} $ M1
					-
	Change of sign, $\therefore 3.5 < \alpha < 3.6$	OE	A1	2	Either side of 15, \therefore 3.5 < α < 3.6 OE A1
(b)	$\left(x^2-4\right)\ln\left(x+2\right)=15$				
	$(x^{2}-4)\ln(x+2)=15$ $x^{2}-4=\frac{15}{\ln(x+2)}$		M1		Either of these lines correct
					Condone poor use of brackets
	$x^2 = 4 + \frac{15}{\ln\left(x+2\right)}$				for M1 only
	$x = \pm \sqrt{4 + \frac{15}{\ln(x+2)}}$	AG	A1	2	Must have both middle lines and no
	$\int \ln(x+2)$			-	errors seen
(c)	$(x_1 = 3 \cdot 5)$				
	$x_2 = 3.578$	CAO	B1		
	$x_3 = 3.568$	CAO	B1	2	
					Sight of AWRT 3.58 or 3.57 scores B1 B0
					Or \pm 3.578 or \pm 3.568 scores B1 B0 $x_1 = 3.578, x_2 = 3.568$ scores B1B0
		Total		6	1 2

IPC3 (cont					Mathematics – Pure Core 3 – January 2011
Q	Solution		Marks	Total	Comments
~	dr				Where <i>k</i> is an integer
3(a)(i)	$\frac{\mathrm{d}x}{\mathrm{d}y} = k \sec^2 \left(3y + 1\right)$		M1		Condone omission of $\frac{dx}{dy}$
	uy				dy
					But
					$\frac{dy}{dr} = k \sec^2(3y+1)$ scores M1 A0
					<i>ux</i>
	$=3\sec^2(3y+1)$	ISW	A1	2	Alternative methods
					$y = \frac{1}{3} \left(\tan^{-1} x - 1 \right)$
					$\frac{\mathrm{d}x}{\mathrm{d}y} = k\left(1+x^2\right) \qquad \qquad \mathbf{M}1$
					$= 3(1 + \tan^2(3y + 1)) $ A1
					Or
					$x = \frac{\sin(3y+1)}{\cos(3y+1)}$
					$\frac{dx}{dy} = \frac{\pm k \cos^2(3y+1) \pm k \sin^2(3y+1)}{\cos^2(3y+1)} M1$
					2
					$=\frac{3}{\cos^2(3y+1)}$ A1
(ii)	$\frac{\mathrm{d}x}{\mathrm{d}y} = 3\mathrm{sec}^2\left(3\times -\frac{1}{3}+1\right)$		M1		Substitution of $y = -\frac{1}{3}$ into their
					dx or dy BUT must have scored M1 in
	$=3sec^20$				$\frac{dx}{dy}$ or $\frac{dy}{dx}$ BUT must have scored M1 in
					(a)(i)
	$\frac{dy}{dt} = \frac{1}{dt}$	CSO	A1	2	Condone 0.333 or better
	dx = 3			-	
					Or
					$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3\mathrm{sec}^2(3y+1)}$
					$=\frac{1}{3\sec^2 0}$ As above
					$=\frac{1}{3}$
3(b)	<i>y</i> ↑				Approx correct shape with no turning
	$\frac{y}{\frac{\pi}{2}}$				points, through (0,0) and only 1 curve
			M1		Asymptotic at both $\pm \frac{\pi}{2}$ and both values
	x				shown
			A1	2	Condone \pm 90 (degrees)
	-# -				Condone $y = \tan x$ also drawn but clearly
	4 1	Total		6	identified, otherwise M0
		Total		U	

MPC3 (cont					Mathematics – Pure Core 3 – January 2011
Q	Solution		Marks	Total	Comments
4(a)	$-3 \leq f(x) \leq 3$		M1		$-3 \le x \le 3, -3 < f(x) < 3$
					-3 < f < 3, -3 < y < 3
					$-3 \le f < 3, -3 < f \le 3$
			A1	2	Allow $-3 \le y \le 3$, $-3 \le f \le 3$
(b)(i)	$y=3\cos\frac{1}{r}r$				
(1)(1)	$y = 3\cos \frac{x}{2}$				
	$y = 3\cos\frac{1}{2}x$ $\frac{y}{3} = \cos\frac{1}{2}x$				
	$3 \qquad 2 \qquad (1)$				
	$\cos^{-1}\frac{y}{3} = \left(\frac{1}{2}x\right)$		M 1		Or $\cos^{-1}\frac{x}{3} = 0$
					5
	$x = 2\cos^{-1}\frac{y}{3}$				Either order
	5				
	$y=2\cos^{-1}\frac{x}{3}$		M1		Swap x and y
	$f^{-1}(x) = 2\cos^{-1}\frac{x}{3}$		A1	3	
	$(x) = 2\cos^{3} 3$		711	5	
					If incorrect in (b)(i) BUT answer
(ii)	$\frac{x}{3} = \cos \frac{1}{2}$		M 1		in form $p \cos^{-1}(qx)$ (condone $p, q = 1$)
	5 2				
	1				Then $qx = \cos\left(\frac{1}{p}\right)$ M1 or $x = f(1)$ M1
	$x = 3\cos\frac{1}{2}$	ISW	A1	2	
	_				$x = 3\cos\frac{1}{2}$ A1
					_
(c)(i)	$gf(x) = \left 3\cos\frac{1}{2}x \right $		B1	1	
(()(1)	$S^{r}(x) = \left \begin{array}{c} S^{r}(x) \\ 2 \end{array} \right $		DI	1	
					and the second
(ii)	3				Modulus graph in 1^{st} quadrant, starting from a +ve y-intercept, at least 2
			M 1		continuous parts, first descending, then
					second increasing
	$\pi 2\pi$		A 1		IGNORE CURVE OUTSIDE RANGE
	Lit.		A1		Correct curvature, curves reaching <i>x</i> -axis, condone multiple curves (no turning
					points at axis)
			A1	3	Approximately symmetrical graph with
					3, π , 2π indicated (must have scored previous 2 marks)
					· · ·
					Condone $y = 3\cos\frac{1}{2}x$ also drawn but
					clearly identified, otherwise M0
(d)	STRETCH + direction		M1		Either in <i>x</i> -direction or <i>y</i> -direction
(u)	s.f. 3, parallel to y-axis		A1		
	s.f. 2, parallel to <i>x</i> -axis		A1	3	Either order
		Total		14	

Mark Schama Constal Cartificate of Education	(A-level) Mathematics – Pure Core 3 – January 2011
Mark Scheme – General Certificate of Education	(A-level) Mathematics – Pure Core 5. – January 2011
	(

MPC3 (cont			, ,	Mathematics – Fule Cole 3 – January 2011
Q	Solution	Marks	Total	Comments
5(a)(i)	$\int \frac{1}{3+2x} dx$ = $k \ln (3+2x)$ = $\frac{1}{2} \ln (3+2x) + c$	M1		Where k is a rational number
	$=\frac{1}{2}\ln(3+2x)+c$	A1	2	Or if substitution $u = 3 + 2x$, $du = 2dx$ $\int = \int \frac{1}{u} \frac{du}{2} = k \ln u$ M1 $= \frac{1}{2} \ln (3 + 2x) + c$ A1
(b)	$u = x$ $dv = \sin \frac{x}{2}$	M1		$\int \sin \frac{x}{2} (dx) = k \cos \frac{x}{2}, \ \frac{d}{dx} (x) = 1$ where k is a constant
	$du = 1 v = -2\cos\frac{x}{2}$	A1		All correct
	$\int = -2x\cos\frac{x}{2} - \int -2\cos\frac{x}{2} (\mathrm{d}x)$	m1		Correct substitution of their terms into parts formula (watch signs carefully)
	$= -2x\cos\frac{x}{2} + 4\sin\frac{x}{2} + c$	A1	4	САО
	Total		6	

Mark Scheme – General Certificate of Education (A-level) Mathem	natics – Pure Core 3 – January 2011

MPC3 (con	t)			·
Q	Solution	Marks	Total	Comments
6(a)	x y	B1		Using 4 correct <i>x</i> -values, PI
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	M1		At least 3 correct <i>y</i> -values, (condone unsimplified correct expressions), Or correct values rounded to 2 s.f. or truncated to 2 s.f.
	$\begin{array}{l} 0.1 \times \Sigma y \\ = 0.122 \end{array} \qquad \qquad \text{CAO}$	m1 A1	4	Used and must be working in radians Must be 3 s.f.
(b)	$\frac{\mathrm{d}u}{\mathrm{d}x} = 3$	M1		du = 3dx OE
	$\int = \int \left(\frac{u \pm 1}{3}\right) \sqrt{u} \times k \mathrm{d}u$ $= \left(\frac{1}{9}\right) \int u^{\frac{3}{2}} \pm u^{\frac{1}{2}} (\mathrm{d}u)$	m1		All in terms of <i>u</i> , with $k = 3$ or $\frac{1}{3}$ Condone omission of d <i>u</i>
	$= \left(\frac{1}{9}\right) \int u^{\frac{3}{2}} \pm u^{\frac{1}{2}} (\mathrm{d}u)$	m1		$p\int u^{\frac{3}{2}} \pm u^{\frac{1}{2}}(\mathrm{d}u)$
	$=\frac{1}{9}\left[\frac{u^{\frac{5}{2}}}{\frac{5}{2}}-\frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right]$	A1		(must have scored first 2 marks) OE
	$= \left(\frac{1}{9}\right) \left[\left(\frac{2}{5} \times 4^{\frac{5}{2}} - \frac{2}{3} \times 4^{\frac{3}{2}}\right) - \left(\frac{2}{5} - \frac{2}{3}\right) \right]$	m1		Must have earned all previous method marks and then correct substitution, into their integral, of 1, 4 for u or 0, 1 for x and subtracting
	$=\frac{116}{135}$ ISW	A1	6	Or equivalent fraction
	Tota		10	

MPC3 (cont		Lauoator	. (,	Mathematics – Pure Core 3 – January 2011
Q	Solution	Marks	Total	Comments
7(a)	$\cos x = -0.2$	M1		Or $\tan x = (\pm)\sqrt{24}$
	<i>x</i> =1.77, 4.51 AWRT	A1		One correct value
		A1	3	Second correct value and no extra values in interval 0 to 6.28 Ignore answers outside interval
				SC x = 1.8, 4.5 with or without working M1 A1 A0
				SC (using degrees)101.54, 281.54M1 A1 A0101.5, 281.5M1 A0 A0
				SC No working shown 2 correct answers 3/3 1 correct answer 2/3
(b)	LHS			
	$=\frac{\operatorname{cosec} x(1-\operatorname{cosec} x)-\operatorname{cosec} x(1+\operatorname{cosec} x)}{(1+\operatorname{cosec} x)(1-\operatorname{cosec} x)}$	M1		Correctly combining fractions but condone poor use, or omission, of brackets
	$=\frac{\operatorname{cosec} x - \operatorname{cosec}^{2} x - \operatorname{cosec}^{2} x}{1 - \operatorname{cosec}^{2} x}$	A1		Allow recovery from incorrect brackets
	$=\frac{-2\csc^2 x}{-\cot^2 x} \text{ or } \frac{-2(1+\cot^2 x)}{-\cot^2 x}$ $2\sec^2 x = 50$	m1		Correct use of relevant trig identity eg $\csc^2 x = 1 + \cot^2 x$
	$\sec^2 x = 25$ AG	A1	4	All correct with no errors seen INCLUDING correct brackets on 1 st line
	Or			
	$\frac{\csc x}{1 + \csc x} - \frac{\csc x}{1 - \csc x} = 50$			
	$\operatorname{cosec} x(1 - \operatorname{cosec} x) - \operatorname{cosec} x(1 + \operatorname{cosec} x)$ $= 50(1 + \operatorname{cosec} x)(1 - \operatorname{cosec} x)$	(M1)		Correctly eliminating fractions but condone poor use, or omission, of brackets
	$\csc x - \csc^2 x - \csc x - \csc^2 x$ $= 50(1 - \csc^2 x)$	(A1)		Allow recovery from incorrect brackets
	$48 \operatorname{cosec}^{2} x = 50$ $\sin^{2} x = \frac{24}{25} \Longrightarrow \cos^{2} x = \frac{1}{25}$	(m1)		Correct use of relevant trig identity eg $\sin^2 x = 1 - \cos^2 x$
	$\sec^2 x = 25$ AG	(A1)		All correct with no errors seen INCLUDING correct brackets on 1 st line

MPC3 (cont				,	Mathematics – Fule Cole 5 – January 2011
Q	Solution		Marks	Total	Comments
7(c)	$\sec x = \pm 5$		M1		Or $\cos x = \pm 0.2$
					Or $\tan x = \pm \sqrt{24}$
	x=1.77, 4.51, 1.37, 4.91	(AWRT)	A1		3 correct
			A1	3	4 correct and no other answers in interval Ignore answers outside interval
					SC 1.8, 4.5, 1.4, 4.9 With on without working M1.4.1
					With or without workingM1 A1SCtheir 2 answers from (a)+1.37, 4.91(AWRT)2/3
					SC For this part, if in degrees max mark is M1 A0
					SC No working shown 4 correct answers 3/3 3 correct answers 2/3 0, 1, 2 correct answers 0/3
		Total		10	

Mark Scheme – General Certificate of Education (A-level) Mathematics – Pure Core 3 – January 2011

MPC3 (cont)				
Q	Solution		Marks	Total	Comments
8 (a)	$e^{-2x} = 4$				
	$-2x = \ln 4$		M1		
	$-2x = \ln 4$ $x = -\frac{1}{2}\ln 4$ IS				$1 \ln 4$
	$x = -\frac{1}{2}\ln 4$ IS	SW	A1	2	OE, eg $\ln \frac{1}{2}$, $-\ln 2$, $\frac{\ln 4}{-2}$
	2				2 2
(b)(i)	(y =)3		B1	1	Condone $(0,3)$ but not $(3,0)$
(ii)	y = 0				
	$4e^{-2x} - e^{-4x} = 0$				
	$4e^{-2x} - e^{-4x} = 0$ $4e^{2x} - 1 = 0$ $e^{2x} = \frac{1}{4} \text{ or } e^{-2x} = 4$		M1		$ae^{\pm 2x}\pm b=0$
	2. 1 2.				
	$e^{2x} = -\frac{1}{4}$ or $e^{-2x} = 4$		A1		
	1		A 1	2	$OE = \frac{1}{1} \ln 4 + \ln 2 + \frac{1}{1} \ln 1$
	$x = \ln \frac{1}{2}$ is	SW	A1	3	OE, eg $-\frac{1}{2}\ln 4$, $-\ln 2$, $\frac{1}{2}\ln \frac{1}{4}$
					and no extra solutions
	Or				
	$4e^{-2x} = e^{-4x}$				
	$\ln 4 - 2x = -4x$		(M1)		
	$4e^{-2x} = e^{-4x}$ $\ln 4 - 2x = -4x$ $2x = -\ln 4$ $x = -\frac{1}{2}\ln 4$		(A1)		OE
	$r = -\frac{1}{2} \ln 4$		(A1)		OE
	$x = \frac{1}{2}$		(ΛI)		0L
(***)					
(III)	$(y' =) - 8e^{-2x} + 4e^{-4x}$		B1		
	$4e^{-4x} = 8e^{-2x}$				
	$(y'=)-8e^{-2x}+4e^{-4x}$ $4e^{-4x} = 8e^{-2x}$ $2e^{2x}-1=0$ or $e^{-2x}-2=0$ or $e^{2x} = \frac{1}{2}$ or $e^{-2x} = 2$				E dy a l di
	$a^{2x} = 1$ $a^{-2x} = 2$		M1		Equating $\frac{dy}{dx} = 0$ and getting
	or $e^{-1} = \frac{1}{2}$ or $e^{-1} = 2$		M1		$ae^{\pm 2x} \pm b = 0$ from $\frac{dy}{dx} = pe^{-2x} + qe^{-4x}$
	or $\ln 4 - 4x = \ln 8 - 2x$				$dz = v - 0$ from $\frac{d}{dx} - pc + qc$
	$r = \frac{1}{10} \frac{1}{10}$	SW	A 1	2	$OE = a \frac{1}{(\ln 4 - \ln 8)}$
	$x = \frac{1}{2}\ln\frac{1}{2}$ IS) VV	A1	3	OE, eg $\frac{1}{2}(\ln 4 - \ln 8)$
					and no extra solutions

Mark Sahama Canaral Cartificate of Education ((A-level) Mathematics – Pure Core 3 – January 2011
INARK Scheme – General Certificate of Education ((A-level) Mathematics – Pure Core 5 – January 2011
	$(\cdots, \cdots, \cdots$

PC3 (cont O	Solution	Marks	Total	Comments
<u>v</u> 8(b)(iv)	$V = \pi \int_{0}^{\ln 2} \left(4e^{-2x} - e^{-4x} \right)^2 dx$	B1	100	Must be completely correct including dx seen on this line or next line Limits, brackets and π PI from later working
	$=(\pi)\int 16e^{-4x} + e^{-8x} - 8e^{-6x}(dx)$	B1		Correct expansion, PI from later working
	$=(\pi)\int 16e^{-4x} + e^{-8x} - 8e^{-6x} (dx)$ $=(\pi) \left[-4e^{-4x} - \frac{1}{8}e^{-8x} + \frac{4e^{-6x}}{3} \right]_{(0)}^{(\ln 2)}$	B1		$\frac{16}{-4}e^{-4x} \text{ OE}$
		B1		$-\frac{1}{8}e^{-8x}$ OE
		B1		$\frac{-8}{-6}e^{-6x}$ OE may be two separate terms
	$=(\pi)\left[\left(-4e^{-4\ln 2}-\frac{1}{8}e^{-8\ln 2}+\frac{4}{3}e^{-6\ln 2}\right)-\left(-4e^{0}-\frac{1}{8}e^{0}+\frac{4}{3}e^{0}\right)\right]$	M1		Correct substitution of $x = \ln 2$ and 0 into their integrated expression (must be of form $ae^{-4x} + be^{-6x} + ce^{-8x}$) and subtracting. PI
	$=\frac{5247}{2048}\pi$	A1	7	OE exact fraction eg $\frac{251856}{98304} \pi$
	Total		16	
	TOTAL		75	