[^0]| 1 | （i） | Method is biased because many pupils cannot be chosen | $\begin{array}{ll} \hline \text { B1 } \\ & \\ \hline \end{array}$ | ＂Biased＂or equivalent stated，allow＂not random＂ Valid relevant reason |
| :---: | :---: | :---: | :---: | :---: |
| | （ii） | Allocate a number to each pupil Select using random numbers | $\begin{array}{ll} & \\ \text { B1 } & \\ \text { B1 } & \\ \hline \end{array}$ | State＂list numbered＂
 Use random numbers［not＂hat＂］ |
| 2 | | $\begin{aligned} & \frac{20-25}{\sigma}=\Phi^{-1}(0.25)=-0.674 \\ & \sigma=5 \div 0.674 \\ & \quad=7.42 \end{aligned}$ | M1
 B1
 M1
 A1 4 | Standardise and equate to $\Phi^{-1} \quad$［not ． 7754 or ．5987］ z in range［ $-0.675,-0.674]$ ，allow +
 （ \pm ） $5 \div z$－value［not $\Phi(z)$ or 0.75 ］ Answer in range［7．41，7．42］，no sign fudges
 ［SR：$\quad \sigma^{2}: \quad$ M1B1M0A0
 cc：M1B1M1A0］ |
| 3 | （a） | $\operatorname{Po}(1.2)$
 Tables or correct formula used 0.8795 | $\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \\ \hline \end{array}$ | Po（1．2）stated or implied Correct method for Poisson probability，allow＂ 1 －＂ Answer， 0.8795 or 0.879 or $0.88(0)$ |
| | | $\begin{aligned} & \left.\left.\begin{array}{l} \mathrm{N}(30,30) \\ \frac{38.5-30}{\sqrt{30}} \end{array}\right]=1.55\right] \\ & {[\Phi(1.55)=]} \end{aligned}$ | B1
 B1
 M1
 A1
 A1 $\mathbf{5}$ | Normal，mean 30 stated or implied
 Variance 30 stated or implied，allow $\sqrt{ } 30$ or 30^{2}
 Standardise using $\sigma^{2}=\mu$ ，allow $\sqrt{ }$ or cc errors
 $\sqrt{ } \mu$ and 38.5 both correct
 Answer in range［0．939，0．94（0）］ |
| 4 | （i） | $\hat{\sigma}^{2}=\frac{50}{49} \times 0.0967=0.0987$ | $\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & 2 \\ \hline \end{array}$ | Use $\frac{n}{n-1} \times s$ or s^{2} ，allow $\sqrt{ }$ Answer，a．r．t． 0.0987 |
| | （ii）
 $\alpha, \beta:$
 α ： | $\mathrm{H}_{0}: \mu=1.8, \mathrm{H}_{1}: \mu \neq 1.8$
 where μ is the population mean $\begin{aligned} & z=\frac{(1.72-1.8)}{\hat{\sigma} / \sqrt{50}}=-1.8(006) \\ & -1.8<-1.645 \end{aligned}$ | B1B1
 M1
 A1
 B1 $\sqrt{ }$ | Hypotheses correctly stated in terms of μ SR：μ wrong／omitted：B1 both，but \bar{X} ：B0
 Standardise with $\sqrt{ } n$ ，allow + ，biased $\sigma, \sqrt{ }$ errors $z=-1.80 \pm 0.01$ ，don＇t allow＋
 Compare $\pm z$ with ± 1.645 ，signs consistent |
| | | $\Phi(-1.8)=1-0.9641<0.05$ | B1 | Explicitly compare $\Phi(z)$ with 0.05 ，correct tail |
| | | $\begin{aligned} & \text { CV } 1.8-k \cdot \sigma / \sqrt{ } 50 \\ & k=1.645, \mathrm{CV}=1.727 \\ & 1.72<1.727 \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \sqrt{ } \\ & \text { B1 } \sqrt{ } \end{aligned}$ | Correct expression for CV，－or \pm, k from Φ^{-1} $C V=1.727$ ，$\sqrt{ }$ on their k ，ignore upper limit $k=1.645$ and compare CV with 1.72 |
| | $\text { Reject } \mathrm{H}_{0}$
 Significant evidence that mean height is not 1.8 | | M1
 A1 $\sqrt{ } 7$ | Reject $\mathrm{H}_{0} \sqrt{ }$ ，correct method，needs $\sqrt{ } 50, \mu=1.8$ ； allow cc，$\sqrt{ }$ or k error or biased σ estimate Conclusion stated in context ［SR：1．8， 1.72 interchanged：B0B0M1A0B1M0］ |
| 5 | （i） | $\begin{aligned} & { }^{30} \mathrm{C}_{10}(0.4)^{10}(0.6)^{20} \text { or } 0.2915-0.1763 \\ & =0.1152 \end{aligned}$ | $\begin{array}{ll} \text { M1 } \\ \text { A1 } \end{array}$ | Correct formula or use of tables Answer，a．r．t． 0.115 |
| | | $\begin{aligned} & 30 p>5 \text { so } p>\frac{1}{6} \\ & 30 q>5 \text { so } q>\frac{1}{6} \\ & \frac{1}{6}<p<\frac{5}{6} \end{aligned}$ | $\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$ | $30 p$ or $30 p q$ used
 $30 q$ or both solutions from 30pq used
 Either $\frac{1}{6}<p<\frac{5}{6}$ or $\left[\frac{1}{2}-\frac{\sqrt{3}}{6}<p<\frac{1}{2}+\frac{\sqrt{3}}{6}\right]$
 ［0．211＜p＜0．789］，allow \leq |
| | （iii） | $\begin{aligned} & \frac{\mathrm{N}(12,7.2)}{\frac{10.5-n p}{\sqrt{n p q}} \text { and } \frac{9.5-n p}{\sqrt{n p q}}} \\ & \Phi(-0.559)-\Phi(-0.9317) \\ & =0.8243-0.7119=0.1124 \end{aligned}$ | B1
 B1
 M1
 A1 $\sqrt{ }$
 M1
 A1 6 | 12 seen
 7.2 or 2.683 seen，allow 7.2^{2}
 Both standardised，allow wrong／no cc，$n p q$
 $\sqrt{ } n p q, 10.5$ and 9.5 correct，$\sqrt{ }$ on their $n p, n p q$
 Correct use of tails
 Answer，in range［0．112，0．113］
 ［SR：$\frac{1}{\sqrt{2 \pi \times 7.2}} e^{-\frac{1}{2} \frac{(10-12)^{2}}{7.2}}$ M1A1，answer A2］ |

[^0]: Mark Scheme 4733 June 2005

