

General Certificate of Education Advanced Level Examination January 2010

Mathematics

MPC4

Unit Pure Core 4

Tuesday 19 January 2010 9.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.
- You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The **Examining Body** for this paper is AQA. The **Paper Reference** is MPC4.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

(5 marks)

Answer all questions.

- 1 The polynomial f(x) is defined by $f(x) = 15x^3 + 19x^2 4$.
 - (a) (i) Find f(-1). (1 mark)
 - (ii) Show that (5x-2) is a factor of f(x). (2 marks)
 - (b) Simplify

$$\frac{15x^2 - 6x}{f(x)}$$

giving your answer in a fully factorised form.

- 2 (a) Express $\cos x + 3\sin x$ in the form $R\cos(x \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$. Give your value of α , in radians, to three decimal places. (3 marks)
 - (b) (i) Hence write down the minimum value of $\cos x + 3 \sin x$. (1 mark)
 - (ii) Find the value of x in the interval $0 \le x \le 2\pi$ at which this minimum occurs, giving your answer, in radians, to three decimal places. (2 marks)
 - (c) Solve the equation $\cos x + 3\sin x = 2$ in the interval $0 \le x \le 2\pi$, giving all solutions, in radians, to three decimal places. (4 marks)
- 3 (a) (i) Find the binomial expansion of $(1+x)^{-\frac{1}{3}}$ up to and including the term in x^2 . (2 marks)
 - (ii) Hence find the binomial expansion of $\left(1+\frac{3}{4}x\right)^{-\frac{1}{3}}$ up to and including the term in x^2 . (2 marks)
 - (b) Hence show that $\sqrt[3]{\frac{256}{4+3x}} \approx a + bx + cx^2$ for small values of x, stating the values of the constants a, b and c. (3 marks)

(5 marks)

- 4 The expression $\frac{10x^2 + 8}{(x+1)(5x-1)}$ can be written in the form $2 + \frac{A}{x+1} + \frac{B}{5x-1}$, where A and B are constants.
 - (a) Find the values of A and B. (4 marks)

(b) Hence find
$$\int \frac{10x^2 + 8}{(x+1)(5x-1)} dx$$
. (4 marks)

5 A curve is defined by the equation

 $x^2 + xy = e^y$

Find the gradient at the point (-1, 0) on this curve.

6 (a) (i) Express $\sin 2\theta$ and $\cos 2\theta$ in terms of $\sin \theta$ and $\cos \theta$. (2 marks)

- (ii) Given that $0 < \theta < \frac{\pi}{2}$ and $\cos \theta = \frac{3}{5}$, show that $\sin 2\theta = \frac{24}{25}$ and find the value of $\cos 2\theta$. (2 marks)
- (b) A curve has parametric equations

$$x = 3\sin 2\theta, \quad y = 4\cos 2\theta$$

- (i) Find $\frac{dy}{dx}$ in terms of θ . (3 marks)
- (ii) At the point *P* on the curve, $\cos \theta = \frac{3}{5}$ and $0 < \theta < \frac{\pi}{2}$. Find an equation of the tangent to the curve at the point *P*. (3 marks)
- 7 Solve the differential equation $\frac{dy}{dx} = \frac{1}{y} \cos\left(\frac{x}{3}\right)$, given that y = 1 when $x = \frac{\pi}{2}$.

Write your answer in the form $y^2 = f(x)$.

Turn over for the next question

(6 marks)

4

The points A, B and C have coordinates (2, -1, -5), (0, 5, -9) and (9, 2, 3)8 respectively.

The line *l* has equation $\mathbf{r} = \begin{vmatrix} 2 \\ -1 \\ 5 \end{vmatrix} + \lambda \begin{vmatrix} 1 \\ -3 \\ 2 \end{vmatrix}$.

- Verify that the point *B* lies on the line *l*. (a) (2 marks)
- Find the vector \overrightarrow{BC} . (b)
- The point D is such that $\overrightarrow{AD} = 2\overrightarrow{BC}$. (c)
 - Show that D has coordinates (20, -7, 19). (i) (2 marks)
 - The point P lies on l where $\lambda = p$. The line PD is perpendicular to l. Find the (ii) value of *p*. (5 marks)
- **9** A botanist is investigating the rate of growth of a certain species of toadstool. She observes that a particular toadstool of this type has a height of 57 millimetres at a time 12 hours after it begins to grow.

She proposes the model $h = A\left(1 - e^{-\frac{1}{4}t}\right)$, where A is a constant, for the height h millimetres of the toadstool, t hours after it begins to grow.

- Use this model to: (a)
 - find the height of the toadstool when t = 0; (1 mark)(i)
 - show that A = 60, correct to two significant figures. (2 marks) (ii)
- (b) Use the model $h = 60 \left(1 e^{-\frac{1}{4}t} \right)$ to:
 - show that the time T hours for the toadstool to grow to a height of 48 millimetres (i) is given by

$$T = a \ln b$$

where a and b are integers; (3 marks)

- (ii) show that $\frac{dh}{dt} = 15 \frac{h}{4}$; (3 marks)
- (iii) find the height of the toadstool when it is growing at a rate of 13 millimetres per hour. (1 mark)

END OF QUESTIONS

(2 marks)