Mark Scheme 4727 January 2007

Mark Scheme

A1 M1 A1		For a convincing reason For attempt to find identity <i>OR</i> for showing operation
		For attempt to find identity OR for showing operation
A1		table
	2	For showing identity is not 3, not 5, and not 7 by reference to operation table or otherwise
B1	1	For value of <i>a</i> stated
B1*		For a pair of correct statements
R 1*		For a pair of correct statements
		Tor a pair of correct statements
B1*		For a pair of correct statements
B1*		For a pair of correct statements
B1		For correct conclusion
(dep ³	*)	
	2	
M1		For attempt to find vector product of both normals
		For correct vector identified with b
		For giving a value to one variable For solving the equations in the other variables
		For a correct vector identified with \mathbf{a}
M1		For eliminating one variable between 2 equations
M1		For solving in terms of a parameter
M1		For obtaining a parametric solution for x , y , z
A1		For a correct vector identified with a
A1	5	For correct vector identified with b
5		
M1		For using quadratic equation formula
		or completing the square
		For obtaining cartesian values AEF
Al		For correct modulus
A1	4	For correct argument
B1√		f.t. from their r^{-3}
M1		For using de Moivre with $n = \pm 3$
A1		For correct value
M1		For using equation to find z^3
B1		Ignore any remaining z terms
A1	3	For correct value
	$\begin{array}{c} B1^{*} \\ B1 \\ (dep)^{*} \\ \hline \\ M1 \\ A1 \\ M1 \\ M1 \\ M1 \\ M1 \\ M1 \\ M1$	B1* B1* B1* B1* B1 (dep*) 2 5 M1 A1 M1 M1 M1 M1 M1 A1 M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A

4727

Mark Scheme

B1	For a correct statement
M1	For substituting into differential equation and attempting to simplify to a variables separable form
A1 3	For correct equation AG
M1 M1* A1	For separating variables and writing integrals For integrating both sides to ln forms For correct result (<i>c</i> not required here)
A1√	For exponentiating their ln equation including a constant (this may follow the next M1)
M1 (dep*)	For substituting $z = \frac{y}{x}$
A1 6	For correct solution properly obtained, including dealing with any necessary change of constant to k as given AG
B1	For correct elements
B1 2	For correct elements
	SR If the answers to parts (i) and (iv) are reversed, full credit may be earned for both parts
M1	For finding $(pq)^3$ or $(pq^2)^3$
A1	For correct order
A1 3	For correct order
	SR For answer(s) only allow B1 for either or both
B1 1	For correct order and no others
B1	For stating <i>e</i> and either pq or p^2q^2
B1	For all 3 elements and no more
B1	For stating <i>e</i> and either $p q^2$ or $p^2 q$
B1 4	For all 3 elements and no more
10	
	M1 A1 3 M1 M1* A1 $$ M1 (dep*) A1 6 9 B1 B1 2 M1 A1 3 B1 1 B1 B1 1 B1 B1 4

4727

Mark Scheme

6 (i) (CF $m = -3 \Rightarrow$) Ae^{-3x}	B1 1	For correct CF
(ii) (y =) px + q	B1	For stating linear form for PI (may be implied)
$\Rightarrow p + 3(px + q) = 2x + 1$	M1	For substituting PI into DE (needs y and $\frac{dy}{dx}$)
$\Rightarrow p = \frac{2}{3}, q = \frac{1}{9}$	A1 A1	For correct values
$\Rightarrow \mathbf{GS} y = Ae^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1	For correct GS. f.t. from their $CF + PI$
		SR Integrating factor method may be used, but CF must be stated somewhere to earn the mark in (i)
I.F. $e^{3x} \implies \frac{d}{dx}(ye^{3x}) = (2x+1)e^{3x}$	B1	For stating integrating factor
$\Rightarrow y e^{3x} = \frac{1}{3}e^{3x}(2x+1) - \int \frac{2}{3}e^{3x}dx$	M1	For attempt at integrating by parts the right way round
$\Rightarrow y e^{3x} = \frac{2}{3}x e^{3x} + \frac{1}{3}e^{3x} - \frac{2}{9}e^{3x} + A$	A2 *	For correct integration, including constant Award A1 for any 2 algebraic terms correct
$\Rightarrow \mathbf{GS} y = A \mathrm{e}^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1√ 5	For correct GS. f.t. from their * with constant
(iii) EITHER $\frac{dy}{dx} = -3Ae^{-3x} + \frac{2}{3}$	M1	For differentiating their GS
$\Rightarrow -3A + \frac{2}{3} = 0$	M1	For putting $\frac{dy}{dx} = 0$ when $x = 0$
$y = \frac{2}{9}e^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1	For correct solution
$OR \ \frac{\mathrm{d}y}{\mathrm{d}x} = 0, \ x = 0 \implies 3y = 1$	M1	For using original DE with $\frac{dy}{dx} = 0$ and $x = 0$ to find y
$\Longrightarrow \frac{1}{3} = A + \frac{1}{9}$	M1	For using their GS with y and $x = 0$ to find A
$y = \frac{2}{9}e^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1 3	For correct solution
(iv) $y = \frac{2}{3}x + \frac{1}{9}$	B1√ 1	For correct function. f.t. from linear part of (iii)
	10	

4727

Mark Scheme

	-	
7 (i) <i>EITHER</i> : (AG is $\mathbf{r} = $)[6, 4, 8]+ tk [1, 0, 1] or [3, 4, 5]+ tk [1, 0, 1]	B1	For a correct equation
Normal to <i>BCD</i> is	M1	For finding vector product of any two of $\pm [1, -4, -1], \pm [2, 1, 1], \pm [1, 5, 2]$
$\mathbf{n} = k [1, 1, -3]$	A1	For correct n
Equation of <i>BCD</i> is $\mathbf{r} \cdot [1, 1, -3] = -6$	A1	For correct equation (or in cartesian form)
Intersect at $(6+t)+4+(-3)(8+t) = -6$	M1	For substituting point on AG into plane
$t = -4$ ($t = -1$ using [3, 4, 5]) \Rightarrow OM = [2, 4, 4]	A1	For correct position vector of <i>M</i> AG
<i>OR</i> : (AG is $\mathbf{r} =$)[6, 4, 8]+ tk [1, 0, 1] <i>or</i> [3, 4, 5]+ tk [1, 0, 1]	B1	For a correct equation
$\mathbf{r} = \mathbf{u} + \lambda \mathbf{v} + \mu \mathbf{w}$, where $\mathbf{u} = [2, 1, 3] \text{ or } [1, 5, 4] \text{ or } [3, 6, 5]$ $\mathbf{v}, \mathbf{w} = \text{two of } [1, -4, -1], [1, 5, 2], [2, 1, 1]$	M1 A1	For a correct parametric equation of <i>BCD</i>
$(x =) 6+t = 2 + \lambda + \mu$ e.g. $(y =) 4 = 1 - 4\lambda + 5\mu$ $(z =) 8+t = 3 - \lambda + 2\mu$	M1	For forming 3 equations in <i>t</i> , λ , μ from line and plane, and attempting to solve them
$t = -4 \text{ or } \lambda = -\frac{1}{3}, \mu = \frac{1}{3}$	A1	For correct value of t or λ , μ
$\Rightarrow \mathbf{OM} = [2, 4, 4]$	A1 6	For correct position vector of M AG
(ii) A, G, M have $t = 0, -3, -4$ OR $AG = 3\sqrt{2}, AM = 4\sqrt{2}$ OR AG = [-3, 0, -3], AM = [-4, 0, -4] $\Rightarrow AG : AM = 3:4$	B1 1	For correct ratio AEF
(iii) $OP = OC + \frac{4}{3}CG$	M1	For using given ratio to find position vector of P
$= \left[\frac{11}{3}, \frac{11}{3}, \frac{16}{3}\right]$	A1 2	For correct vector
(iv) <i>EITHER</i> : Normal to <i>ABD</i> is	M1	For finding vector product of any two of $\pm[4, 3, 5], \pm[1, 5, 2], \pm[3, -2, 3]$
$\mathbf{n} = k [19, 3, -17]$	A1	For correct n
Equation of <i>ABD</i> is $r.[19, 3, -17] = -10$	M1	For finding equation (or in cartesian form)
$19.\frac{11}{3} + 3.\frac{11}{3} - 17.\frac{16}{3} = -10$	A1	For verifying that <i>P</i> satisfies equation
<i>OR</i> : Equation of <i>ABD</i> is $\mathbf{r} = [6, 4, 8] + \lambda[4, 3, 5] + \mu[1, 5, 2]$ (etc.)	M1	For finding equation in parametric form
$\left[\frac{11}{3}, \frac{11}{3}, \frac{16}{3}\right] = [6, 4, 8] + \lambda[4, 3, 5] + \mu[1, 5, 2]$	M1	For substituting <i>P</i> and solving 2 equations for λ , μ
$\lambda = -\frac{2}{3}, \mu = \frac{1}{3}$	A1	For correct λ , μ
	A1	For verifying 3rd equation is satisfied
<i>OR</i> : AP = $\left[-\frac{7}{3}, -\frac{1}{3}, -\frac{8}{3}\right]$	M1	For finding 3 relevant vectors in plane ABDP
AB = [-4, -3, -5], AD = [-3, 2, -3]	A1	For correct AP or BP or DP
$AB = [-4, -3, -5], AD = [-3, 2, -3]$ $\Rightarrow AB + AD = [-7, -1, -8]$	M1	For finding AB , AD or BA , BD or DB , DA
$\Rightarrow \mathbf{AP} = \frac{1}{3}(\mathbf{AB} + \mathbf{AD})$	A1 4	For verifying linear relationship
	13	

Mark Scheme

8 (i) $\cos 4\theta + i \sin 4\theta =$ $c^4 + 4i c^3 s - 6c^2 s^2 - 4i cs^3 + s^4$ $\Rightarrow \sin 4\theta = 4c^3 s - 4cs^3$	M1	For using de Moivre with $n = 4$
and $\cos 4\theta = c^4 - 6c^2s^2 + s^4$	A1	For both expressions
$\Rightarrow \tan 4\theta = \frac{4\tan\theta - 4\tan^3\theta}{1 - 6\tan^2\theta + \tan^4\theta}$	M1	For expressing $\frac{\sin 4\theta}{\cos 4\theta}$ in terms of <i>c</i> and <i>s</i>
	A1 4	For simplifying to correct expression
(ii) $\cot 4\theta = \frac{\cot^4 \theta - 6\cot^2 \theta + 1}{4\cot^3 \theta - 4\cot \theta}$	B1 1	For inverting (i) and using $\cot \theta = \frac{1}{\tan \theta}$ or $\tan \theta = \frac{1}{\cot \theta}$. AG
(iii) $\cot 4\theta = 0$	B1	For putting $\cot 4\theta = 0$
Put $x = \cot^2 \theta$ $\theta = \frac{1}{8}\pi \Rightarrow x^2 - 6x + 1 = 0$ $OR x^2 - 6x + 1 = 0 \Rightarrow \theta = \frac{1}{8}\pi$	B1 B1 3	(can be awarded in (iv) if not earned here) For putting $x = \cot^2 \theta$ in the numerator of (ii) For deducing quadratic from (ii) and $\theta = \frac{1}{8}\pi$ <i>OR</i>
8		For deducing $\theta = \frac{1}{8}\pi$ from (ii) and quadratic
(iv) $4\theta = \frac{3}{2}\pi OR \frac{1}{2}(2n+1)\pi$	M1	For attempting to find another value of θ
2nd root is $x = \cot^2\left(\frac{3}{8}\pi\right)$	A1	For the other root of the quadratic
$\Rightarrow \cot^2\left(\frac{1}{8}\pi\right) + \cot^2\left(\frac{3}{8}\pi\right) = 6$	M1	For using sum of roots of quadratic
$\Rightarrow \csc^2\left(\frac{1}{8}\pi\right) + \csc^2\left(\frac{3}{8}\pi\right) = 8$	M1 A1 5 13	For using $\cot^2 \theta + 1 = \csc^2 \theta$ For correct value