Mark Scheme

June 2010

1	(i)(a)	$1 - P(\le 6) = 1 - 0.8675$	M1		1 – .9361 or 1 – .8786 or 1 – .8558: M19721: M0					
•	(1)(a)	$(1 - P(\le 0) = 1 - 0.8073)$ = 0.1325	A1	2	r = .3501 of 1 = .3780 of 1 = .3558. W13721. W0 Or 0.132 or 0.133					
	(b)	Po(0.42)	M1		Po(0.42) stated or implied					
	(0)		M1 M1		Correct formula, any numerical λ					
		$e^{-0.42} \frac{0.42^2}{2!} = 0.05795$	A1	3	Answer, art 0.058. Interpolation in tables: M1B2					
	(::)	<u> </u>								
	(ii)	E.g. "Contagious so incidences do	B2	2	Contextualised reason, referred to conditions: B2. No					
		not occur independently", or "more			marks for mere learnt phrases or spurious reasons, e.g.					
		cases in winter so not at constant			not just "independently, singly and constant average					
_	(*)	average rate"	>/1		rate". See notes.					
2	(i)	B(10, 0.35)	M1		B(10, 0.35) stated or implied					
		P(< 3)	M1	•	Tables used, e.g. 0.5138 or 0.3373, or formula ± 1 term					
		= 0.2616	A1	3	Answer 0.2616 or better or 0.262 only					
	(ii)	Binomial requires being chosen	B2	2	Focus on "Without replacement" negating independence					
		independently, which this is not, but			condition. It doesn't negate "constant probability"					
_		unimportant as population is large			condition but can allow B1 if "selected". See notes					
3	(i)	$\left(\frac{32-40}{\sigma}\right) = \Phi^{-1}(0.2) = -0.842$	M1		Standardise and equate to Φ^{-1} , allow "1 –" errors, σ^2 , cc					
		(σ)	B1	-	0.842 seen					
		$\sigma = 9.5[06]$	A1	3	Answer, 9.5 or in range [9.50, 9.51], c.w.o.					
	(ii)	B(90, 0.2)	B1		B(90, 0.2) stated or implied					
		≈ N(18, 14.4)	M1		N, their np					
		$(195-18)$ 1 \oplus (0.2052)	A1		variance their npq , allow $$ errors					
		$1 - \Phi\left(\frac{19.5 - 18}{\sqrt{14.4}}\right) = 1 - \Phi(0.3953)$	M1		Standardise with <i>np</i> and <i>npq</i> , allow $$, cc errors, e.g.					
			A1		.396, .448, .458, .486, .472; \sqrt{npq} and cc correct					
		= 1 - 0.6537 = 0.3463	A1	6	Answer, a.r.t. 0.346 [NB: 0.3491 from Po: 1/6]					
4		$H_0: p = 0.4,$	B1		Fully correct, B2. Allow π . <i>p</i> omitted or μ used in both,					
		$H_1: p > 0.4$	B1		or > wrong: B1 only. x or \overline{x} or 6.4 etc: B0					
		$R \sim B(16, 0.4)$:	M1		B(16, 0.4) stated or implied, allow N(6.4, 3.84)					
	(α)	$P(R \ge 11) = 0.0191$	A1		Allow for $P(\le 10) = 0.9808$, and < 0.99 , or $z = 2.092$ or					
	(00)	$\Gamma(R = 11) = 0.0171$			Anow for $P(\le 10) = 0.3008$, and < 0.393 , or $z = 2.092$ or $p = 0.018$, but not $P(\le 11) = 0.9951$ or $P(= 11) = 0.0143$					
		> 0.01	A1		$p = 0.018$, but not $P(\le 11) = 0.9951$ or $P(= 11) = 0.0143$ Explicit comp with .01, or $z < 2.326$, not from ≤ 11 or $= 11$					
	$\langle 0 \rangle$		A1		******					
	(β)	CR $R \ge 12$ and $11 < 12$	A1 A1		Must be clear that it's ≥ 12 and not ≤ 11 Needs to be seen allow 0.0051 here, or $n = .0047$ from N					
		Probability 0.0049			Needs to be seen, allow 0.9951 here, or $p = .0047$ from N					
		Do not reject H_0 . Insufficient	M1	-	Needs like-with-like, $P(R \ge 11)$ or $CR R \ge 12$					
		evidence that proportion of	A1 FT	7	Conclusion correct on their p or CR, contextualised, not					
		commuters who travel by train has			too assertive, e.g. "evidence that" needed.					
-	(*)	increased	N/1		Normal, $z = 2.34$, "reject" [no cc] can get 6/7					
5	(i)	(a) $30+1.645 \times \frac{5}{\sqrt{10}}$	M1		$30 + 5z/\sqrt{10}$, allow \pm but not just –, allow $\sqrt{10}$ errors					
		$\sqrt{10}$	B1		z = 1.645 seen, allow –					
		= 32.6	A1		Critical value, art 32.6					
		Therefore critical region is $\overline{t} > 32.6$	A1 FT	4	"> c " or " $\geq c$ ", FT on c provided > 30, can't be					
					recovered. Withhold if not clear which is CR					
		(b) $P(t < 32.6 \mu = 35)$	M1*		Need their <i>c</i> , final answer < 0.5 and μ = 35 at least, but					
		32.6 - 35 [-1 5178]			allow answer > 0.5 if consistent with their (i)					
		$\frac{32.6 - 35}{5/\sqrt{10}} \ [= -1.5178]$	dep*M1		Standardise their CV with 35 and $\sqrt{10}$ or 10					
		0.0645	A1	3	Answer in range [0.064, 0.065], or 0.115 from 1.96 in (a)					
	(ii)	$(32.6 - \mu) = 0$	M1		Standardise <i>c</i> with μ , equate to Φ^{-1} , can be implied by:					
	(11)	$(32.6 - \mu) = 0$ $\mu = 32.6$	A1 FT		Standardise c with μ , equate to Φ^{-} , can be implied by: $\mu = \text{their } c$					
		$\mu = 32.0$ 20 + 0.6m = 32.6	M1 M1		Equate and solve for <i>m</i> , allow from 30 or 35					
		m = 21	A1	4	Answer, a.r.t. 21, c.a.o.					
		m – 21		•	MR: 0.05: M1 A0 M1, 16.7 A1 FT					
					Ignore variance throughout (ii)					
1		1	1							

Mark Scheme

June 2010

6	(a)	N(24, 24)	B1	Normal, mean 24 stated or implied			
		$-(30.5-24) - 1 = \Phi(1.327)$	B1	Variance or SD equal to mean			
		$1 - \Phi\left(\frac{30.5 - 24}{\sqrt{24}}\right) = 1 - \Phi(1.327)$	M1	Standardise 30 with λ and $\sqrt{\lambda}$, allow cc or $\sqrt{\gamma}$ errors, e.g.			
		(\24)	A1	.131 or .1103 ; 30.5 and $\sqrt{\lambda}$ correct			
		= 0.0923	A1 5	Answer in range [0.092, 0.0925]			
	(b)(i)	<i>p</i> or <i>np</i> [= 196] is too large	B1 1	Correct reason, no wrong reason, don't worry about 5 or 15			
	(ii)	Consider $(200 - E)$	M1	Consider complement			
		$(200 - E) \sim Po(4)$	M1	Po(200×0.02)			
		$P(\geq 6) [= 1 - 0.7851]$	M1	Poisson tables used, correct tail, e.g. 0.3712 or 0.1107			
		= 0.2149	A1 4	Answer a.r.t. 0.215 only			
7		$H_0: \mu = 56.8$	B2	Both correct			
		$H_1: \mu \neq 56.8$		One error: B1, but <i>not</i> \overline{x} , etc			
		$\overline{x} = 17085/300 = 56.95$	B1	56.95 or 57.0 seen or implied			
		$\frac{300}{299} \left(\frac{973847}{300} - 56.95^2 \right)$	M1	Biased [2.8541] : M1M0A0			
			M1	Unbiased estimate method, allow if ÷ 299 seen anywhere			
		= 2.8637	A1	Estimate, a.r.t. 2.86 [not 2.85]			
	(α)		M1	Standardise with $\sqrt{300}$, allow $\sqrt{200}$ errors, cc			
		$z = \frac{56.95 - 56.8}{\sqrt{2.8637 / 300}} = 1.535$	A1	$z \in [1.53, 1.54]$ or $p \in [0.062, 0.063]$, not – 1.535			
		1.535 < 1.645 or $0.0624 > 0.05$	A1	Compare explicitly z with 1.645 or p with 0.05, or			
				$2p > 0.1$, not from $\mu = 56.95$			
	(β)	CV $56.8 \pm 1.645 \times \sqrt{\frac{2.8637}{300}}$	M1	56.8 + $z\sigma/\sqrt{300}$, needn't have \pm , allow $\sqrt{200}$ errors			
		$5.8 \pm 1.043 \times \sqrt{-300}$	A1	z = 1.645			
		56.96 > 56.95	A1 FT	$c = 56.96$, FT on z, and compare 56.95 $[c_L = 56.64]$			
		Do not reject H_0 ;	M1	Consistent first conclusion, needs 300, correct method			
		-		and comparison			
		insufficient evidence that mean	A1 FT	Conclusion stated in context, not too assertive, e.g.			
		thickness is wrong	11	"evidence that" needed			
8	(i)	$\begin{bmatrix} \infty & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	M1	Integrate $f(x)$, limits 1 and ∞ (at some stage)			
		$\int_{1}^{\infty} kx^{-a} \mathrm{d}x = \left[k \frac{x^{-a+1}}{-a+1} \right]_{1}^{\infty}$	B1	Correct indefinite integral			
			A1 3	Correctly obtain given answer, don't need to see			
		Correctly obtain $k = a - 1$ AG		treatment of ∞ but mustn't be wrong. Not k^{-a+1}			
	(ii)	$\int_{1}^{\infty} 3x^{-3} dx = \left[3\frac{x^{-2}}{-2} \right]_{1}^{\infty} = 1\frac{1}{2}$	M1	Integrate $xf(x)$, limits 1 and ∞ (at some stage)			
		$\int_{1}^{3} 5x \mathrm{d}x = \begin{bmatrix} 3 \\ -2 \end{bmatrix}_{1}^{-1/2}$	141	$[x^4 \text{ is not MR}]$			
		$\int_{1}^{\infty} 3x^{-2} dx = \left[3\frac{x^{-1}}{-1} \right]_{1}^{\infty} - (1\frac{1}{2})^{2}$ Answer ³ / ₄	M1	Integrate $x^2 f(x)$, correct limits			
			A1 M1	Either $\mu = 1\frac{1}{2}$ or $E(X^2) = 3$ stated or implied, allow $k, k/2$			
			M1 A1 5	Subtract their numerical μ^2 , allow letter if subs later			
			AI 5	Final answer ³ / ₄ or 0.75 only, cwo, e.g. not from $\mu = -1\frac{1}{2}$.			
			1414	[SR: Limits 0, 1: can get (i) B1, (ii) M1M1M1]			
	(iii)	$\int_{1}^{2} (a-1)x^{-a} dx = \left[-x^{-a+1}\right]_{1}^{2} = 0.9$ $1 - \frac{1}{2^{a-1}} = 0.9, \ 2^{a-1} = 10$	M1*	Equate $\int f(x)dx$, one limit 2, to 0.9 or 0.1.			
		1	1	[Normal: $0 \text{ ex } 4$]			
		$1 - \frac{1}{2^{a-1}} = 0.9, \ 2^{a-1} = 10$	dep*M1 M1 indept	Solve equation of this form to get 2^{a-1} = number			
			M1 indept	Use logs or equivalent to solve 2^{a-1} = number Answer a r t 4 32 T&I: (M1M1) B2 or B0			
		<i>a</i> = 4.322	A1 4	Answer, a.r.t. 4.32. T&I: (M1M1) B2 or B0			

Mark Scheme

B1

Specimen Verbal Answers

1	α							
	β	Above + "but it is contagious"	B1					
	γ	Above + "but not independent as it is contagious"	B2					
	δ	"Not independent as it is contagious"	B2					
	3	"Not constant average rate", or "not independent"	B0					
	λ	"Not constant average rate because contagious" [needs more]	B1					
	ζ	"Not constant average rate because more likely at certain times of year"	' B2					
	μ	Probabilities changes because of different susceptibilities	B0					
	ν	Not constant average rate because of different susceptibilities	B2					
	η	Correct but with unjustified or wrong extra assertion [scattergun]	B1					
	θ	More than one correct assertion, all justified	B2					
	π	Valid reason (e.g. "contagious") but not referred to conditions						
learr	nt phrase	explaining why the required assumptions might not apply. No credit for re- es, such as "events must occur randomly, independently, singly and at cor , even if contextualised.]						
2	Don't	Don't need either "yes" or "no".						
	α	"No it doesn't invalidate the calculation" [no reason]	B0					
	β	"Binomial requires not chosen twice" [false] B0						
	" " " " Probability has to be constant but here the probabilities change"							

- 'Probability has to be constant but here the probabilities change' γ B0 δ Same but "probability of being chosen" [false, but allow B1] B1
- "Needs to be independently chosen but probabilities change" [confusion] B0 ε
- ζ "Needs to be independent but one choice affects another" [correct] **B**2
- "The sample is large so it makes little difference" [false] η
- B0 θ "The population is large so it makes little difference" [true] B2
- λ Both correct and wrong reasons (scattergun approach)

[Focus is on modelling conditions for binomial: On every choice of a member of the sample. each member of the population is equally likely to be chosen; and each choice is independent of all other choices.

Recall that in fact even without replacement the probability that any one person is chosen is the same for each choice. Also, the binomial "independence" condition does require the possibility of the same person being chosen twice.]

Some explanation seems necessary. The following are widespread but mistaken beliefs:

- Choosing a random sample by means of random numbers does not permit the same 1) person to be chosen twice.
- 2) Sampling without replacement causes p to change from one trial to another.
- Both of these are FALSE! Why?
- 1) Random sampling using random numbers demands that each member of the sample is chosen independently of every other member of the sample. If it is known that a certain person is in the sample and that that person cannot be chosen again, this fact changes the probability that another person is chosen next time. The same sequence of random digits can come up again. Just because, say, 123 has already occurred doesn't alter the fact that 123 is just as likely as any other 3-digit sequence to come up on any other go, and the same person can be chosen twice.
- 2) Attention has been drawn before to the confusion that exists for many candidates between "trials are independent" and "each trial has the same probability of success", caused by too much emphasis on the misleading example of drawing counters out of a bag. Consider the present case. The probability that, say, the third student picked is a science student is 0.35, as it is for the first, second, ..., tenth. This is a familiar fact from S1 and can easily be demonstrated using a tree diagram, assuming an appropriate total

Mark Scheme

June 2010

population size (say 100). It is not the absolute ("prior") probabilities that change but the conditional probabilities, which are irrelevant.

In fact the binomial distribution applies only to sampling with replacement. Strictly, the proper method of calculating probabilities when sampling without replacement is the method using ${}^{n}C_{r}$ from S1. Again suppose the population is of size 100, of whom 35 are studying science subjects. Consider the probability that a sample of 10 students consists of exactly two who are studying science subjects.

- Case 1 (with replacement. Binomial): ${}^{10}C_2 \ 0.35^2 \ 0.65^8 = 0.1757$. Case 2 (without replacement. ${}^{n}C_{r}$): ${}^{35}C_2 \times {}^{65}C_8 \ / {}^{100}C_{10} = 0.1735$.

The difference is small, though not non-existent. The bigger the population, the smaller the difference; for a population of size 1000 the second probability is 0.1755. In real life, repeats are usually not allowed, but use of the binomial distribution remains appropriate provided the population is large enough. (There is a technical name for the ${}^{n}C_{r}$ method; it is called the hypergeometric distribution.)