January 2014 (IAL)

Mark Scheme (Results)

January 2014

Pearson Edexcel International Advanced Level

Mechanics 2 (WME02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014 Publications Code IA037820 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Notes From Chief Examiner

- Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is accuracy error not method error.
- Omission of mass from a resolution is method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.
- N.B. Over-accuracy or under-accuracy of correct answers should only be penalised **ONCE** per complete question.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft.

Question Number	Scheme	Marks	
1a	$2((2\mathbf{i} - 3\mathbf{j}) - (3\mathbf{i} + 4\mathbf{j})) = \mathbf{I}$ = -2\mathbf{i} - 14\mathbf{j}	M1 A1 A1	Use of impulse = change in momentum Must be subtracting Correctly substituted
	$ I = \sqrt{2^2 + 14^2} = \sqrt{200} = 10\sqrt{2} $ (Nm)	M1	Use of Pythagoras for their impulse in the form $a\mathbf{i} + b\mathbf{j}$
		A1 [5]	$\sqrt{200}$, $10\sqrt{2}$, 14.1 or better
1b	$\cos \theta = \frac{50 + 25 - 13}{2 \times 5 \times \sqrt{50}}$	M1	Use of cosine rule in a triangle correct for their I. (all momentum or all velocity/speed)
	-i - 7j $\sqrt{50}$	A1	Correct unsimplified expression for $\cos \theta$
	θ 3i + 4j 5 (θ = 28.7°), required angle = 151°	A1 [3]	Or better
Alt 1b		M1	Correct use of scalar product (for their I)
	$\cos\theta = \frac{-3-28}{5\times\sqrt{50}}$	A1	Correct unsimplified expression for $\cos \theta$. NB scalar product of I and u is OK
	$\theta = 151^{\circ}$	A1	Or better
		[3]	
Alt 1b	$\tan^{-1}\frac{4}{3} + \tan^{-1}\left(\operatorname{their}\frac{2}{14}\right) + 90$ or equivalent	M1 A1	Correct strategy Correct unsimplified
	$\theta = 151^{\circ}$	A1 [3] [8]	Or better

January 2014 (IAL

	FilysicsAnuwainsTuic		0011001 y 2014 (1
Question Number	Scheme	Marks	
2a	$v = 3t^2 - 16t + 20 \Longrightarrow a = 6t - 16$	M1	Differentiation of v (having multiplied out). Need evidence of correct method but condone a slip.
	$t = 3, a = 18 - 16 = 2 \text{ (ms}^{-2}\text{)}$	A1 A1	Correct differentiation of their 3 term quadratic cso
		[3]	
2b	$s = \int 3t^2 - 16t + 20dt = t^3 - 8t^2 + 20t(+C)$	M1 A2	Integration of v cao Condone missing C 1 each error
	t = 0, s = 0 t = 2, s = 8 - 32 + 40 = 16	M1	Strategy for total distance - needs to include use of $t = 2$
	t = 3, s = 27 - 72 + 60 = 15	A1	Correct unsimplified
	Distance = $16 + 1 = 17 (m)$	A1	cao
		[6]	
2c	$s = 0 \Longrightarrow t^{3} - 8t^{2} + 20t = 0$ $t \neq 0 \Longrightarrow t^{2} - 8t + 20 = 0$	M1	Set $s = 0$ and solve for t
	$(t-4)^2 + 4 \ge 4 \forall t$, (or >0) so no solutions, so <i>s</i> is never zero again	A1 [2]	Or equivalent argument for $s \neq 0$
Alt 2c	$t = \frac{10}{3}, \ s = 14.8$	M1	Consider <i>s</i> when <i>P</i> stops going towards <i>O</i>
	$t > \frac{10}{3}$, $v > 0$ so s never decreases again - no return	A1 [2]	
		[11]	

January	2014 (<u>(I</u> AL)
		-

	FIIySICSAIIUWatiiST		January 2014 (17
Question Number	Scheme	Marks	
3 a	Horizontal: max speed \Rightarrow Driving force = <i>R</i>	B1	
	Use of $P = Fv$ $P = 30R$	B1	
	On the slope: $F = mg\sin\theta + R\left(=\frac{550g}{14} + R\right)$	M1	Resolve to find driving force parallel to the slope. Condone sign and sin/cos confusion.
		A1	Correct unsimplified equation
	$P = 25\left(\frac{550g}{14} + R\right) = 25(385 + R)$	DM1	Use of $P = Fv$
	$30R = 25R + 385 \times 25 = 25R + 9625$		Use simultaneous equations to form an equation
	or $P = 25\left(385 + \frac{P}{30}\right)$	DM1	in P or R
	D = 1000 (1020) N $D = 59 000 (57 900) W$	A2	A1 for each one correct to 2 or 3 s.f.
	$R = 1900 (1930) \text{ N}$ $P = 58 \ 000 (57 \ 800) \text{ W}$		Lose first A1 for one or both overspecified.
		[8]	
	50,000	M1	Use of $F = ma$ and $P = Fv$
3b	At 20 m s ⁻¹ , $\frac{50,000}{20} - R = 550a$	A1	Correct equation (with or without substitution for <i>R</i>)
	$\frac{50000}{20} - 1925 = 550a$	DM1	Substitute for their <i>R</i> and solve for <i>a</i> .
	Acceleration = $1.0 (1.05) \text{ m s}^{-2}$	A1	Max 3 s.f. (Not $\frac{23}{22}$ unless over-accuracy
			already penalised)
		[4]	
		[12]	

Question Number				Marks		
4a	ABC Area $2 \times 2\sqrt{3} (= 4\sqrt{3})$ c of m from $\frac{2\sqrt{3}}{3}$ $4\sqrt{5} + \frac{2\sqrt{3}}{3}$	$\frac{ACD}{2h}$ $\frac{h}{3}$	ABCE $4\sqrt{3}-2h$ h	B1 B1 M1	Correct area ratios Correct distances Moments about <i>AC</i> or Needs to include all rel	
	$4\sqrt{3} \times \frac{2\sqrt{3}}{3} - 2h \times \frac{h}{3} = h(4\sqrt{3} - 2)$ $8 - \frac{2}{3}h^{2} = 4\sqrt{3}h - 2h^{2}$ $h^{2} - 3\sqrt{3}h + 6 = 0$		$3\sqrt{3}\sqrt{3}+6$	A1 M1	Correct unsimplified ea Simplify to 3 term quadratic	quation Substitute $h = \sqrt{3}$ in their equation
4b	$h^{2} - 3\sqrt{3}h + 6 = 0$ $h = \frac{3\sqrt{3} \pm \sqrt{27 - 24}}{2} = \frac{2\sqrt{3}}{2} = \sqrt{3} \text{ (m)}$	=3-9+	6 = 0	M1 A1 [7] M1	Solve for <i>h</i> Obtain given answer correctly Taking moments about	Simplify Confirm given result correctly
UF	$F \times 4 = W \times \left(2\sqrt{3} - \sqrt{3}\right) \times \sin 30$ $= W \times \frac{\sqrt{3}}{2}$ $F = \frac{\sqrt{3}W}{8}$		A1 A1 A1 [4]	$4F = W \times d \text{ with } d \text{ ind}$ diagram Equation with $d \text{ correc}$ $(F \times 4 = W \times \sqrt{7} \sin 19.$ Accept $F = 0.22W$ or	licated correctly on t 1)	
				[11]		

	PhysicsAndMathsTu	tor.com	January 2014 (IAL
Question Number	Scheme	Marks	
5a	$D \qquad mg \times a \sin \theta = F \times 2a$	M1	Moments about D . Condone sin/cos confusion. The Q tells them to use D but accept complete alternative routes to the given answer.
	$A \qquad T \qquad 2a \qquad 2a$	A1	Correct unsimplified equation
	$\frac{\theta}{mg} = \frac{R}{F} = \frac{mg\sin\theta}{2}$	A1 [3]	*Given Answer*
5b	$mg \times \frac{a}{3}\sin\theta + F \times \frac{4a}{3}\cos\theta = R \times \frac{4a}{3}\sin\theta$	M1	Moments about <i>C</i> . Need all three terms. Condone sin/cos confusion and sign errors.
	3 3 3	A2	-1each error
	$mg(1+2\cos\theta) = 4R$, $R = \frac{mg(1+2\cos\theta)}{4}$	DM1 A1 [5]	Substitute for <i>F</i> and find <i>R</i>
5b alt		M1	Resolve vertically or horizontally
	D	A1	$T \cos \alpha = F$ $T \sin \alpha + R = mg$
		A1	$R = mg - \frac{mg\sin\theta\sin\alpha}{2\cos\alpha}$
	a E E R θ R	M1	Link α and θ : $\tan \alpha = \frac{DE}{CE} = \frac{2a - \frac{4}{3}a\cos\theta}{\frac{4}{3}a\sin\theta}$
	F B	A1 [5]	$R = mg - mg\sin\theta \frac{2a - (4/3)a\cos\theta}{2\times(4/3)a\sin\theta} \left(= \frac{mg}{4} (1 + 2\cos\theta) \right)$

	January 2014 (IAL		
Question Number	Scheme	Marks	
5c	Use of $F = \mu R$	M1	
	Use of $\sin \theta = \frac{4}{5}$ and $\cos \theta = \frac{3}{5}$	DM1	Substitute trig values. Dependent on the preceding M mark
	$\mu = \frac{\frac{mg\sin\theta}{2}}{\frac{mg(1+2\cos\theta)}{4}} = \frac{2\sin\theta}{1+2\cos\theta} = \frac{8}{11}$	A1 [3]	0.73 or better
		[11]	

	PhysicsAndMathsTu	tor.com	January 2014 (IA
Question Number	Scheme	Marks	
6a	Velocity after t seconds = $3\mathbf{i} + (v - gt)\mathbf{j}$	B1 B1	Horizontal component Vertical component Both B marks could be implied in the KE equation
	KE $9 + v^2 = 2(9 + (v - gt)^2)$	M1	KE equation condone 2 on the wrong side
	$9 + v^2 = 18 + 2v^2 - 12v + 18$	A2 A1	Correct unsimplified equation1each error Correct equation in v
	$v^2 - 12v + 27 = 0$	DM1	Solve for <i>v</i>
	(v-3)(v-9)=0, v=9	A1 [8]	only
6a alt	$s_{y} = v \times \frac{15}{49} - \frac{g}{2} \left(\frac{15}{49}\right)^{2}$	B2	Vertical height when $t = \frac{15}{49}$ Allow with t -1 each error
	$\frac{1}{2} \times \frac{1}{2} \left(9 + v^2\right) = g \left(\frac{15v}{49} - 4.9 \left(\frac{15}{49}\right)^2\right)$	M1 A2	Use of GPE gained = KE lost Allow with t -1 each error. t must be substituted
	$v^{2}-12v+27=0$ (v-3)(v-9)=0, v=9	A1 DM1	Correct equation in v Solve for v
	(v-3)(v-9)=0, v=9	A1 [8]	only
6b	At <i>B</i> , vertical component = -6 (= $-(v-3)$)	B1	Allow for their <i>v</i>
	-6 = 9 - gt	M1	for their v
	$t = \frac{15}{g} = \left(\frac{75}{49}\right) = 1.53 (1.5)$	A1 [3]	Correct only
6b alt	Time to top $=\frac{9}{g}$	B1	Or time to ground
	Time to same height $=\frac{9}{g} + \left(\frac{9}{g} - \frac{15}{49}\right)$	M1	and work back
	<i>t</i> =1.53	A1 [3]	

January 2014 (IAL)

	T Trysics/ (Talifatis) a		<u> </u>
Question Number	Scheme	Marks	
6b alt	Height at A is $\frac{225}{98}$	B1	
	$\frac{225}{98} = 9t - \frac{1}{2}gt^2$	M1	Use <i>suvat</i> for vertical distance
	t = 1.53	A1	
		[3] [11]	

Question Number	Scheme	Marks	
7a	$\xrightarrow{5u} \qquad \qquad \underbrace{4u} \qquad \qquad \underbrace{3u} \qquad \qquad \\ \xrightarrow{4u} \qquad \qquad \underbrace{3u} \qquad \qquad \\ \xrightarrow{4u} \qquad \qquad \underbrace{3u} \qquad \qquad \\ \xrightarrow{4u} \qquad \qquad \underbrace{3u} \qquad \\ \xrightarrow{4u} \qquad \qquad \underbrace{3u} \qquad \\ \xrightarrow{4u} \qquad \qquad \underbrace{3u} \qquad \\ \xrightarrow{4u} \qquad \underbrace{3u} \qquad \underbrace{3u} \qquad \\ \xrightarrow{4u} \qquad \underbrace{3u} \qquad \underbrace{3u} \qquad \\ \xrightarrow{4u} \qquad \underbrace{4u} \qquad \underbrace{3u} \qquad \underbrace{3u} \qquad \underbrace{4u} \qquad \underbrace{4u} \qquad \underbrace{3u} \qquad \underbrace{4u} \qquad \underbrace{4u} \qquad \underbrace{4u} \qquad \underbrace{3u} \qquad \underbrace{4u} \qquad $		
	\xrightarrow{v} \xrightarrow{w}		
	CLM: $5mu - 4mu = mv + mw$ $(u = v + w)$	M1 A1	Needs all the terms. Condone sign errors
	NEL: $w - v = 9ue$	M1	Impact law - condone sign errors but must be used the right way round.
	$2w = 9eu + u, w = \frac{u}{2}(9e + 1)$	A1 DM1 A1	Solve for <i>v</i> or <i>w</i> . Dependent on both of the preceding M marks
	$2v = u - 9eu, \qquad v = \left \frac{u}{2}(1 - 9e)\right $	A1	The Q asks for speed, so need the modulus.
		(7)	
7b	<i>B</i> cannot catch <i>C</i> : $w \le 3u \Longrightarrow 9eu + u \le 6u$, $e \le \frac{5}{9}$	M1	A correct inequality (condone strict inequality $w < 3u$)
70	<i>b</i> cannot catch C. $w \le 5u \implies 9eu + u \le 0u, e \le \frac{-9}{9}$	A1	A correct critical value $\frac{5}{9}$ or $\frac{1}{9}$
	Direction of A reversed: $v < 0 \Longrightarrow 1 - 9e < 0$, $e > \frac{1}{9}$	M1	Second inequality correct
	$\frac{1}{9} < e \le \frac{5}{9}$	A1	cao
		(4) [11]	

January 2014 (IAL)

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE